QUESTION 1
The point C(3.6, -0.4) divides AB in the ratio 3 : 2.
The coordinates of A are (-6, 5).
Let the coordinates of B be ![(x_2,y_2)](https://tex.z-dn.net/?f=%28x_2%2Cy_2%29)
We use the formula:
to determine the x-coordinate of B.
We substitute the known values to obtain:
![3.6=\frac{3x_2-12)}{5}](https://tex.z-dn.net/?f=3.6%3D%5Cfrac%7B3x_2-12%29%7D%7B5%7D)
![3.6\times 5=3x_2-12](https://tex.z-dn.net/?f=3.6%5Ctimes%205%3D3x_2-12)
![18=3x_2-12](https://tex.z-dn.net/?f=18%3D3x_2-12)
![18+12=3x_2](https://tex.z-dn.net/?f=18%2B12%3D3x_2)
![30=3x_2](https://tex.z-dn.net/?f=30%3D3x_2)
This implies that:
![x_2=10](https://tex.z-dn.net/?f=x_2%3D10)
We also use the formula:
to find the y-coordinate.
![-0.4=\frac{3y_2+2(5)}{3+2}](https://tex.z-dn.net/?f=-0.4%3D%5Cfrac%7B3y_2%2B2%285%29%7D%7B3%2B2%7D)
![-0.4=\frac{3y_2+10}{5}](https://tex.z-dn.net/?f=-0.4%3D%5Cfrac%7B3y_2%2B10%7D%7B5%7D)
![-0.4\times 5=3y_2+10](https://tex.z-dn.net/?f=-0.4%5Ctimes%205%3D3y_2%2B10)
![-2-10=3y_2](https://tex.z-dn.net/?f=-2-10%3D3y_2)
![-12=3y_2](https://tex.z-dn.net/?f=-12%3D3y_2)
![-4=y_2](https://tex.z-dn.net/?f=-4%3Dy_2)
The coordinates of B are (10,-4)
QUESTION 2.
If point D divides CD in the ratio 4 : 5.
Then the coordinates of D are:
![(\frac{4(10)+5(3.6)}{4+5}, \frac{4(-4)+5(-0.4)}{4+5})](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%2810%29%2B5%283.6%29%7D%7B4%2B5%7D%2C%20%5Cfrac%7B4%28-4%29%2B5%28-0.4%29%7D%7B4%2B5%7D%29)
![(\frac{58}{9}, \frac{-18}{9})](https://tex.z-dn.net/?f=%28%5Cfrac%7B58%7D%7B9%7D%2C%20%5Cfrac%7B-18%7D%7B9%7D%29)
The coordinates of D are ![(\frac{58}{9}, -2)](https://tex.z-dn.net/?f=%28%5Cfrac%7B58%7D%7B9%7D%2C%20-2%29)