The correct answer is B. 24 N.
To figure out the exact force the cart exerts on the woman, we have to use Newton's third law of motion. Newton's third law of motion states that every action has an equal and opposite reaction. This means that if object 1 exerts a force on object 2 , object 2 will exert an equal but opposite force on object 1.
This law allows us to ignore the masses of the chart and the women and focus on the pairs of forces the woman and the chart apply to each other. Since the woman exerts a force of 24 N on the chart, the chart will exert a force of 24 N on the woman.
The correct answer is B. 24 N.
No two electrons in an atom or molecule may have the same four electronic quantum numbers, according to the Pauli Exclusion Principle. Only two electrons can fit into an orbital at a time, hence they must have opposing spins.
<h3>What is Pauli's exclusion principle ?</h3>
According to Pauli's Exclusion Principle, no two electrons in the same atom can have values for all four of their quantum numbers that are exactly the same. In other words, two electrons in the same orbital must have opposing spins and no more than two electrons can occupy the same orbital.
- The reason it is known as the exclusion principle is because it states that all other electrons in an atom are excluded if one electron in the atom has the same specific values for all four quantum numbers.
Learn more about Pauli's exclusion principle here:
brainly.com/question/2623936
#SPJ4
Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)
Answer:
750 J
Explanation:
lets convert mass into kg first , 150 /1000 = 0.15 kg
kinetic energy =
= 