Answer:
The height of the second cone is 2 <em>h</em>₁.
Step-by-step explanation:
The volume of a cone is:
![V=\pi\ r^{2}\frac{h}{3}](https://tex.z-dn.net/?f=V%3D%5Cpi%5C%20r%5E%7B2%7D%5Cfrac%7Bh%7D%7B3%7D)
The volume of the first cone is, <em>V</em>₁ = 5 in³.
The volume of the second cone is, <em>V</em>₂ = 10 in³.
The two cones have the same base diameters.
This implies that the two radii are same, i.e. <em>r</em>₁ = <em>r</em>₂.
Compute the height of the second cone as follows:
![r_{1}=r_{2}](https://tex.z-dn.net/?f=r_%7B1%7D%3Dr_%7B2%7D)
![\frac{3\cdot V_{1}}{\pi\ h_{1}}=\frac{3\cdot V_{2}}{\pi\ h_{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Ccdot%20V_%7B1%7D%7D%7B%5Cpi%5C%20h_%7B1%7D%7D%3D%5Cfrac%7B3%5Ccdot%20V_%7B2%7D%7D%7B%5Cpi%5C%20h_%7B2%7D%7D)
![\frac{V_{1}}{h_{1}}=\frac{V_{2}}{ h_{2}}](https://tex.z-dn.net/?f=%5Cfrac%7BV_%7B1%7D%7D%7Bh_%7B1%7D%7D%3D%5Cfrac%7BV_%7B2%7D%7D%7B%20h_%7B2%7D%7D)
![\frac{5}{h_{1}}=\frac{10}{h_{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7Bh_%7B1%7D%7D%3D%5Cfrac%7B10%7D%7Bh_%7B2%7D%7D)
![h_{2}=2\ h_{1}](https://tex.z-dn.net/?f=h_%7B2%7D%3D2%5C%20h_%7B1%7D)
Thus, the height of the second cone is 2 <em>h</em>₁.
To get the area, multiply the length x width
2.6 x 2.8 = 7.28
Answer: for example (-2,-2), (-3,-6), and (-8,-10)
Step-by-step explanation: every point in the third quadrant is both negative.