A straight line equals 180 degrees, so the 3 angles in the picture need to equal 180.
X + 90 + 25 = 180
x +115 = 180
Subtract 115 from both sides:
x = 65
Answer:
1.921
Step-by-step explanation:
Answer:
Angle 1 = 39, Angle 2 = 78 , Angle 3 = 63
Step-by-step explanation:
78/2 = 39
(Angle 2/2 = Angle 1)
78 - 15 = 63
(Angle 2 - 15 = Angle 3)
39 + 78 + 63 = 180
(Angle 1 + Angle 2 + Angle 3 = 180)
Answer:
x = 5/2 , y = -7/2
Step-by-step explanation:
<em>r's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>finding</em><em> </em><em>midpoint</em><em> </em><em>=</em><em>.</em><em>(</em><em> </em><em>X1</em><em> </em><em>+</em><em> </em><em>X</em><em>2/</em><em>)</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>(</em><em>Y1+</em><em>Y2)</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> </em><em>the </em><em>value</em><em> </em><em>of </em><em>in </em><em>formula</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>x=</em><em> </em><em> </em><em>4</em><em>+</em><em>1</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>1</em><em>-</em><em>6</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>7</em><em>/</em><em>2</em>
<em>hope</em><em> it</em><em> helps</em>
Please refer to my attachments for visual guidelines.
We are going to solve your problem by using the pythagorean theorem, a^2+b^2 = c^2, where a and b are the legs of the triangle, and c is the hypotenuse (the longest side).
The length of the ladder is equal to 70ft (hypotenuse); one leg is the distance between the wall and the bottom of the ladder - 40 ft, the other leg is unknown for it is the distance between 10 ft above the ground and the top of the ladder-represented by "x". Using pythagorean theorem, a^2+b^=c^2, we have x^2+40^2 = 70^2. Solving the exponents, we have x^2 + 1600 = 4900.
Isolating the variable x, we have x^2 = 4900-1600. Futher simplying, x^2 = 3300. Thus, x = √
3300 or 57.4456264654 ft.
Adding 10 ft to x, therefore, the top of the leadder is 67.4456264654 ft off the ground.