Answer:
39.7 m
Explanation:
First, we conside only the last second of fall of the body. We can apply the following suvat equation:

where, taking downward as positive direction:
s = 23 m is the displacement of the body
t = 1 s is the time interval considered
is the acceleration
u is the velocity of the body at the beginning of that second
Solving for u, we find:

Now we can call this velocity that we found v,
v = 18 m/s
And we can now consider the first part of the fall, where we can apply the following suvat equation:

where
v = 18 m/s
u = 0 (the body falls from rest)
s' is the displacement of the body before the last second
Solving for s',

Therefore, the total heigth of the building is the sum of s and s':
h = s + s' = 23 m + 16.7 m = 39.7 m
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).
Answer:
To share a positive experience she had with a pen pal
Explanation:
Just read the story :)
Answer:
A switch opens or closes the electrical circuit, turning the flow of electricity on or off.
Explanation: