Answer:
It's is c coz the weight is equal to the normal force
Answer:
The value of heat transfer during the process Q = - 29.49 KJ
Explanation:
Given data
= 50
= 344.7 k pa
= 0.113 
F = 366.4 K
= 477.6 K
Poly tropic index n = 1.2
gas constant for oxygen = 0.26 
From ideal gas equation
= m R 
Put all the values in above equation we get
⇒ 344.7 × 0.113 = m × 0.26 × 366.4
⇒ m = 0.408 kg
Heat transfer in poly tropic process is given by
Q = ![\frac{\gamma - n}{( \gamma - 1)( n - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cgamma%20-%20n%7D%7B%28%20%5Cgamma%20-%201%29%28%20n%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
Put all the values in above formula we get
⇒ Q = ![\frac{1.4 - 1.2}{( 1.4 - 1)( 1.2 - 1)} [ {m R (T_{1} - T_{2} ) ]](https://tex.z-dn.net/?f=%5Cfrac%7B1.4%20-%201.2%7D%7B%28%201.4%20-%201%29%28%201.2%20-%201%29%7D%20%5B%20%7Bm%20R%20%28T_%7B1%7D%20-%20T_%7B2%7D%20%20%29%20%5D)
⇒ Q = 2.5 × 0.408 × 0.26 × ( 366.4 - 477.6 )
⇒ Q = - 29.49 KJ
This is the value of heat transfer during the process & negative sign shows that heat is lost during the process.
Answer:
d) I and III only.
Explanation:
Let be
and
the masses of the two laboratory carts and let suppose that
. The expressions for each kinetic energy are, respectively:
and
.
After some algebraic manipulation, the following relation is constructed:

Since
, then
. That is to say,
.
The expressions for each linear momentum are, respectively:
and 
Since
, then
. Which proves that statement I is true.
According to the Impulse Theorem, the impulse needed by cart I is greater than impulse needed by cart II, which proves that statement II is false.
According to the Work-Energy Theorem, both carts need the same amount of work to stop them. Which proves that statement III is true.