Answer:
a) m=20000Kg
b) v=0.214m/s
Explanation:
We will separate the problem in 3 parts, part A when there were no coals on the car, part B when there is 1 coal on the car and part C when there are 2 coals on the car. Inertia is the mass in this case.
For each part, and since the coals are thrown vertically, the horizontal linear momentum p=mv must be conserved, that is,
, were each velocity refers to the one of the car (with the eventual coals on it) for each part, and each mass the mass of the car (with the eventual coals on it) also for each part. We will write the mass of the hopper car as
, and the mass of the first and second coals as
and
respectively
We start with the transition between parts A and B, so we have:

Which means

And since we want the mass of the first coal thrown (
) we do:



Substituting values we obtain

For the transition between parts B and C, we can write:

Which means

Since we want the new final speed of the car (
) we do:

Substituting values we obtain

Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
<em>A</em><em>i</em><em>r</em><em> </em><em>r</em><em>e</em><em>s</em><em>i</em><em>t</em><em>a</em><em>n</em><em>c</em><em>e</em><em>s</em><em> </em><em>a</em><em>l</em><em>s</em><em>o</em><em> </em><em>k</em><em>n</em><em>o</em><em>w</em><em> </em><em>a</em><em>s</em><em> </em><em>d</em><em>r</em><em>a</em><em>g</em><em> </em><em>i</em><em>s</em><em> </em><em>a</em><em> </em><em>f</em><em>o</em><em>r</em><em>c</em><em>e</em><em> </em><em>t</em><em>h</em><em>a</em><em>t</em><em> </em><em>i</em><em>s</em><em> </em><em>c</em><em>a</em><em>u</em><em>s</em><em>e</em><em>d</em><em> </em><em>b</em><em>y</em><em> </em><em>a</em><em>i</em><em>r</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>f</em><em>o</em><em>r</em><em>c</em><em>e</em><em> </em><em>a</em><em>c</em><em>t</em><em>s</em><em> </em><em>i</em><em>n</em><em> </em><em>o</em><em>p</em><em>p</em><em>s</em><em>i</em><em>t</em><em>e</em><em> </em><em>d</em><em>i</em><em>r</em><em>e</em><em>c</em><em>t</em><em>i</em><em>o</em><em>n</em><em>s</em><em> </em><em>t</em><em>o</em><em> </em><em>a</em><em>n</em><em> </em><em>o</em><em>b</em><em>j</em><em>e</em><em>c</em><em>t</em><em> </em><em>m</em><em>o</em><em>v</em><em>i</em><em>n</em><em>g</em><em> </em><em>t</em><em>h</em><em>r</em><em>o</em><em>u</em><em>g</em><em>h</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>a</em><em>i</em><em>r</em><em> </em><em>.</em><em>.</em>
<em>H</em><em>O</em><em>P</em><em>E</em><em> </em><em>T</em><em>H</em><em>I</em><em>S</em><em> </em><em>H</em><em>E</em><em>L</em><em>P</em><em> </em><em>Y</em><em>O</em><em>U</em><em> </em><em>.</em><em>.</em>
The sound wave will rebound when it is a barrier, hope this helps