Answer:
Explanation:
Let the volume below water be v . Then
buoyant force = v d g where d is density of water , g is acceleration due to gravity
= v x 1000 x g
weight of wood piece = volume x density of wood x g
= .6 x 600 x g
for equilibrium while floating
buoyant force = weight
= v x 1000 x g = .6 x 600 x g
v = .36 m²
volume above water or volume exposed = .6 - .36
= .24 m²
When immersed completely ,
buoyant force = .6 x 1000 x 9.8
= 5880 N
weight of wood
= .6 x 600 x g
= 3528 N
buoyant force is more than the weight . In order to equalise them for floating with full volume in water
weight required = 5880 - 3528
= 2352 N.
The car at 60 kph has 9 times more kinetic energy than the car traveling at 20 kph. This assumes that both cars have the same mass. Kinetic energy depends on the square of thee speed so if one car is going 3 times faster, its kinetic energy will be 3^2 ( = 9 ) greater. The car going at 60 kph will have 4 times the KE of the car going at 30 kph ( again assuming that the cars have the same mass.)
Answer:

Explanation:
It is given that,
The number of lines per unit length, N = 900 slits per cm
Distance between the formed pattern and the grating, l = 2.3 m
n the first-order spectrum, maxima for two different wavelengths are separated on the screen by 2.98 mm, 
Let d is the slit width of the grating,



For the first wavelength, the position of maxima is given by :

For the other wavelength, the position of maxima is given by :

So,



or

So, the difference between these wavelengths is 14.3 nm. Hence, this is the required solution.
The igneous rocks which were deposited on the surface and then cooled are known as extrusive. These rocks are a result of a magma reaching the surface of the Earth which cools the magma quickly. Examples are rhyolite, basalt, obsidian and andesite.