Interpreting the graph and the situation, it is found that the values of d that can be included in the solution set are 1 and 4.
----------------------
- According to Benford's law, the probability of a number starting with digit is d is:

- A number can start with 10 possible digits, ranging from 1 to 9, which are all integer digits.
- Thus, d can only assume integer digits.
- In the graph, the solution is d < 5.
- The integer options for values of d are 1 and 4.
- For the other options that are less than 5, they are not integers, so d cannot assume those values.
A similar problem is given at brainly.com/question/16764162
Answer:7
Step-by-step explanation:7
Answer:
C = (2,2)
Step-by-step explanation:
B = (10 ; 2)
M = (6 ; 2)
C = (x ; y )
|___________|___________|
B (10;2) M (6;2) C ( x; y)
So:
dBM = dMC
√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 6)^2]
(2-2)^2 - (6-10)^2 = (y-2)^2 + (x - 6)^2
0 + (-4)^2 = (y-2)^2 + (x - 6)^2
16 = (y-2)^2 + (x - 6)^2
16 - (x - 6)^2 = (y-2)^2
Also:
2*dBM = dBC
2*√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 10)^2]
4*[(0)^2 + (-4)^2] = (y-2)^2 + (x - 10)^2
4*(16) = (y-2)^2 + (x - 10)^2
64 = (y-2)^2 + (x - 10)^2
64 = 16 - (x - 6)^2 + (x - 10)^2
48 = (x - 10)^2 - (x - 6)^2
48 = x^2 - 20*x + 100 - x^2 + 12*x - 36
48 = - 20*x + 100 + 12*x - 36
8*x = 16
x = 2
Thus:
16 - (x - 6)^2 = (y-2)^2
16 - (2 - 6)^2 = (y-2)^2
16 - (-4)^2 = (y-2)^2
16 - 16 = (y-2)^2
0 = (y-2)^2
0 = y - 2
2 = y
⇒ C = (2,2)
Answer:
1) given
2) given
3) definition of vertical angles
4) AAS
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
sing the equation > A = Pe^rt
20000 = 10000e^0.1t > 10% = 0.1
2 = e^0.1t
log 2 = log e^0.1t > log to the base e
log 2 = 0.1t * 1 log e to the base e =1
0.6931 = 0.1t
t = 6.931
= 7 years
Hope this helps <3
Wanna get ranked faster? Comment "rankup"