Answer:576
Step-by-step explanation:
If the sum is negative or if the signs are different and the negative has a biger absoulute value.
Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
12a + 7(2000) > = 38000
12a + 14000 > = 38000
12a > = 38000 - 14000
12a > = 24000
a > = 24000/12
a > = 2000 <==== at least 2000 alumni would have to buy tickets
Answer:
Area of sector = 102.6 feet squared
Step-by-step explanation:
Given:
Radius of circle = 14 ft
Angle θ = 60°
Find:
Area of sector
Computation:
Area of sector = [θ/360]πr²
Area of sector = [60/360](22/7)(14)²
Area of sector = [1/6][22/7][196]
Area of sector = 102.6 feet squared