Answer:
1408.685 KN/C
Explanation:
Given:
R = 0.45 m
σ = 175 μC/m²
P is located a distance a = 0.75 m
k = 8.99*10^9
- The Electric Field Strength E of a uniformly solid disk of charge at distance a perpendicular to disk is given by:

part a)
Electric Field strength at point P: a = 0.75 m

part b)
Since, R >> a, we can approximate a / R = 0 ,
Hence, E simplified relation becomes:

E = σ / 2*e_o
part c)
Since, a >> R, we can approximate. that the uniform disc of charge becomes a single point charge:
Electric Field strength due to point charge is:
E = k*δ*pi*R^2 / a^2
Since, R << a, Surface area = δ*pi
Hence,
E = (k*δ*pi/a^2)
Information travels along the axon once an impulse is received. The axon then takes it to the place where it can be sent off to another neuron
<span>dendrite → cell body → axon → axon terminals is the correct answer</span>
<span>If I managed to help you, please make sure to mark my answer as the "Brainliest" answer. Thanks! :)</span>
Answer:
-17.5 nC
Explanation:
charge A = -30 nC
charge B = -5 nC
After adding them it would be the average of the two charges because of the getting same voltage difference. so
c = (-30+(-5)) / 2 nC
c= -17.5 nC
answer is -17.5 nC
Answer:
Explanation:
initial velocity v = 2.1 x 10⁷ m/s
acceleration a = 5.1 x 10¹⁵ m /s²
horizontal distance covered = 5.5 x 10⁻² m
time taken to cover horizontal distance = 5.5 x 10⁻² / 2.1 x 10⁷
= 2.62 x 10⁻⁹ s .
b )
vertical distance travelled due to vertical acceleration
= 1/2 a t²
= .5 x 5.1 x 10¹⁵ x (2.62 x 10⁻⁹)²
= 17.5 x 10⁻³ m
<span>light amplification by stimulated emission of radiation
</span>