Answer:
1. A1, B2, C3
2. 47.1°
Explanation:
Sum of forces in the x direction:
∑Fₓ = ma
f − Fᵥᵥ = 0
f = Fᵥᵥ
Sum of forces in the y direction:
∑Fᵧ = ma
N − W = 0
N = W
Sum of moments about the base of the ladder:
∑τ = Iα
Fᵥᵥ h − W (b/2) = 0
Fᵥᵥ h = ½ W b
Fᵥᵥ (l sin θ) = ½ W (l cos θ)
l Fᵥᵥ sin θ = ½ l W cos θ
The correct set of equations is A1, B2, C3.
At the smallest angle θ, f = Nμ. Substituting into the first equation, we get:
Nμ = Fᵥᵥ
Substituting the second equation into this equation, we get:
Wμ = Fᵥᵥ
Substituting this into the third equation, we get:
l (Wμ) sin θ = ½ l W cos θ
μ sin θ = ½ cos θ
tan θ = 1 / (2μ)
θ = atan(1 / (2μ))
θ = atan(1 / (2 × 0.464))
θ ≈ 47.1°
<span>In this particular case, where car is moving through curvature, so it is moving in circular motion, force acting on car is centripetal force which holds car not to fly out. Centripetal force is always pointed in the middle of circle. Here frictional force has role of centripetal force. If frictional force is to weak, car would fly out of curvutare.</span>
Take the derivative to find the velocity of the object:

The object stops when
:

so the answer is E.
<u>Answer</u>
A. Metals A and metals B
<u>Explanation</u>
Heat transfer takes place whenever there is temperature difference. When two bodies of different temperatures are brought together, heat energy will move from one body to the other until equilibrium temperature is reached.
In our case, heat transfer will take place in all four metals.
Metal A will transfer heat to the water since it's temperature is higher than that of water.
Metal B will also transfer heat to the water since it's temperature is higher than that of water.
Metal C will get heat from the water since it's colder than the water.
Metal D will also get heat from the water since it is colder than water.
Answer:
85.5 km/h
Explanation:
= time interval for first phase = 14 min =
h = 0.233 h
= time interval for second phase = 46 min =
h = 0.767 h
= average speed for the entire trip = 74 km/h
= average speed in first phase = 36 km/h
= average speed in second phase
= distance traveled in first phase
= distance traveled in first phase
average speed is given as




km/h