1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natali [406]
3 years ago
6

A child is trying to throw a ball over a fence. She gives the ball an initial speed of 8.0 m/s at an angle of 40° above the hori

zontal. The ball leaves her hand 1.0 m above the ground and the fence is 2.0 m high. The ball just clears the fence while still traveling upwards and experiences no significant air resistance. How far is the child from the fence?

Physics
1 answer:
EastWind [94]3 years ago
6 0

Answer:

the child is 1.581 m far from the fence

Explanation:

The diagrammatic illustration that give a better view of what the question denote can be seen in the image attached below.

From the image attached below, let assume that the release point is the origin, then equation of the motion (x) is as follows:

x - x_o = u_xt

\mathtt{x = u_xt  \ \  \ since (x_o = 0)}  ---- (1)

the equation of the motion y is :

\mathtt{y - y_o =u_yt - 0.5 gt^2}

\mathtt{y = u_yt-4.9t^2     \ \ \  since (y_o =0)}

\mathtt{ 1= (u \ sin 40^0)t -4.9 \ t^2        }

\mathtt{1 = 8 sin 40^0 t - 4.9 t^2}

\mathtt{1 = 5.14t - 4.9t^2}

\mathtt{4.9t^2 - 5.14t +1 = 0}

By using the quadratic formula, we have;

\mathtt{ \dfrac{ -b \pm \sqrt{b^2 - 4ac}}{2a}}     }

where;

a = 4.9,   b = -5.14     c = 1

= \mathtt{ \dfrac{ -(-5.14) \pm \sqrt{(-5.14)^2 - 4(4.9)(1)}}{2(4.9)}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{26.4196 -19.6}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14 \pm \sqrt{6.8196}}{9.8}}     }

= \mathtt{ \dfrac{ 5.14+ \sqrt{6.8196}}{9.8}  \  \ OR \  \  \dfrac{ 5.14- \sqrt{6.8196}}{9.8}}    }

= \mathtt{ \dfrac{ 5.14+ 2.6114}{9.8}  \  \ OR \  \  \dfrac{ 5.14- 2.6114}{9.8}}    }

= \mathtt{ \dfrac{ 7.7514}{9.8}  \  \ OR \  \  \dfrac{ 2.5286}{9.8}}    }

= \mathbf{ 0.791 \  \ OR \  \  0.258}    }

In as much as the ball is traveling upward, then we consider t= 0.258sec.

From equation (1)

\mathtt{x = u_x(0.258)}

\mathtt{x = ucos 40^0 (0.258)}

\mathtt{x = 8 \ cos 40^0 (0.258)}

\mathbf{x = 1.581  \ m}

Thus, the child is 1.581 m far from the fence

You might be interested in
In January 2006, astronomers reported the discovery of a planet comparable in size to the earth orbiting another star and having
Orlov [11]

Answer:

R = 5.28  103 km

Explanation:

The definition of density is

              ρ = m / V

              V = m /ρ

Where m is the mass and V the volume of the body

The volume of a sphere is

            V = 4/3 π r³

Let's replace

             4/3 π r³ = m / ρ

             R =∛ ¾ m / ρ π

The mass of the planet is

              M = 5.5 Me

              R = ∛ ¾ 5.5 Me /ρ π

Let's reduce the density to SI units

             ρ = 1.76 g / cm³ (1 kg / 10³ g) (10² cm / 1 m)³

             ρ = 1.76 10³ kg / m³

Let's calculate

               R = ∛ ¾ 5.5 5.97 10²⁴ / (1.76 10³ pi)

               R = ∛ 0.14723 10²¹

               R = 0.528 10⁷ m

               R = 0.528 104 km

               R = 5.28  103 km

8 0
3 years ago
By using fossils and matching layers rock layers can be correlated to eachother.
bija089 [108]
I think that the answer to that is true hope that helps
4 0
4 years ago
Read 2 more answers
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the _
fgiga [73]
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the <span>number of successful effective collisions is higher. More of the reactants collide and are able to form products. Hope this answers the question. have a nice day.</span>
6 0
4 years ago
At the equator, the radius of the Earth is approximately 6370 km. A plane flies at a very low altitude at a constant speed of v
Anna007 [38]

To solve this problem we will apply the concepts related to the kinematic equations of linear motion. For this purpose we will define the speed as the distance traveled in a given period of time. Here the distance is equivalent to the orbit traveled around the earth, that is, a circle. Approaching the height of the aircraft with the radius of the earth, we will have the following data,

R= 6370*10^3 m

v = 219m/s

a = 17m/s^2

The circumference of the earth would be

\phi = 2\pi R

Velocity is defined as,

v = \frac{x}{t}

t = \frac{x}{v}

Herex = \phi, then

t = \frac{\phi}{v} = \frac{2\pi (6370*10^3)}{219}

t = 1.82*10^5s

Therefore will take 1.82*10^5 s or 506 hours, 19 minutes, 17 seconds

3 0
3 years ago
Starting at 1.3 m/s, a runner accelerates at a constant 0.22 m/s2 for 6.0 s. What is the runner’s displacement during this time
Anettt [7]

Answer:

answer is 11.76 meter

Explanation:

use 2nd equation of motion

S=ut+1/2at^2

7 0
3 years ago
Other questions:
  • Una jarra abierta no contiene agua o ningun liquido ¿que hay en su interior?
    6·1 answer
  • Examine the graph. Select the statement that best describes the energy change in the particles of a substance during melting.
    10·2 answers
  • How can you model electromagnetic wave behavior?​
    5·2 answers
  • (28 points) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of ra
    13·1 answer
  • How does the gravitational force between two objects change if the mass of
    8·1 answer
  • A string of length 0.6 M is vibrating at 100 Hz and its second harmonic and producing sound that moves at 340 m/s. What is true
    7·2 answers
  • Does charged battery have energy
    6·2 answers
  • HELP! FOR A TEST!
    11·2 answers
  • An object moves in a direction parallel to its length with a velocity that approaches the velocity of light. The length of this
    9·1 answer
  • Which one of these is a compound
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!