Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Definition: a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.
Answer:
Statement 2 is wrong
Explanation:
To check the statements in this exercise, let's describe the main properties of electromagnetic waves. Let's describe the characteristics
* they are transverse waves
* formed by the oscillations of the electric and magnetic fields
* the speed of the wave is the speed of light
with these concepts let's review the final statements
1) True. Formed by the oscillation of the two fields
2) False. They are transverse waves
3) True. Can travel by vacuum as they are supported by oscillations of the electric and magnetic fields
4) True. They all have the same speed of light
Statement 2 is wrong
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Answer:
A
Explanation:
Hooke's law! F(spring)=-kx
There's no tricky square law here. The spring constant doesn't change, only x (distance stretched) changes. Therefore, if distance is halved, Force will be halved.