Answer:
177.1 L
Explanation:
The excersise can be solved, by the Ideal Gases Law.
P . V = n . R . T
In first step we need to determine the moles of gas:
We convert T° from, C° to K → 20°C + 273 = 293K
We convert P from mmHg to atm → 760 mmHg = 1atm
1Dm³ = 1L → 190L
We replace: 190 L . 1 atm = n . 0.082 . 293K
(190L.atm) / 0.082 . 293K = 7.91 moles.
We replace equation at STP conditions (1 atm and 273K)
V = (n . R .T) / P
V = (7.91 mol . 0.082 . 273K) / 1atm = 177.1 L
We can also make a rule of three:
At STP conditions 1 mol of gas occupies 22.4L
Then, 7.91 moles will be contained at (7.91 . 22.4) /1 = 177.1L
1. weathering and erosion on Earth's surface is always breaking Rock down 2. Transport 3. Deposition 4. Compaction and cementation. 5. Metamorphism 6. rock melt
Answer:
The factor of increasing reaction rate is 1,85x10¹².
Explanation:
Using arrhenius formula:

Where k is rate constant; A is frecuency factor; Eₐ is activation energy; R is gas constant (0,008134 kJ/molK); T is temperature 25°C = 298,15K
Thus, replacing for an activation energy of 125 kJ/mol assuming A as 1:
k = 1,25x10⁻²²
When activation energy is 55kJ/mol:
k = 2,31x10⁻¹⁰
Thus, the factor of increasing reaction rate is:
2,31x10⁻¹⁰/1,25x10⁻²² =<em> 1,85x10¹²</em>
<em></em>
I hope it helps!
Answer:
D = m/v.
Explanation:
The density of a substance is the relationship between the mass of the substance and how much space it takes up (volume). The mass of atoms, their size, and how they are arranged determine the density of a substance. Density equals the mass of the substance divided by its volume;