Number of moles:
1 mole ---------- 6.02x10²³ molecules
? moles --------- 9.45x10²⁴ molecules
1 x ( 9.45x10²⁴) / 6.02x10²³ =
9.45x10²⁴ / 6.02x10²³ => 15.69 moles of CH3OH
Therefore:
Molar mass CH3OH = 32.04 g/mol
1 mole ------------ 32.04 g
15.69 moles ----- mass methanol
Mass methanol = 15.69 x 32.04 / 1 => 502.7076 g
Answer:
Au
Explanation:
For the density of a face-centered cubic:

where
= molar mass of the compound
avogadro's constant
the volume of a unit cell
Given that:
Density
= 19.30 g/cm³
a = 0.408 nm
a = 
a = 
∴



Thus, the molar mass of 197.37 g/mol element is Gold (Au).
Answer: There are
molecules present in 7.62 L of
at
and 722 torr.
Explanation:
Given : Volume = 7.62 L
Temperature = 
Pressure = 722 torr
1 torr = 0.00131579
Converting torr into atm as follows.

Therefore, using the ideal gas equation the number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

According to the mole concept, 1 mole of every substance contains
atoms. Hence, number of atoms or molecules present in 0.244 mol are calculated as follows.

Thus, we can conclude that there are
molecules present in 7.62 L of
at
and 722 torr.
Answer:
A
Explanation:
because number of particle = moles × 6.02 × 10^23
which gives the answer as an A