Answer:
Meter, Gram and Liter.
Explanation:
In the metric system, the standard units for the below are;
Length - Meter
Mass - Gram
Volume - Liter.
Answer:

Explanation:
We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

where
is the distance of the new object from the sun (orbital radius)
is the orbital period of the object
is the orbital radius of the Earth
is the orbital period the Earth
Solving the equation for
, we find
![r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m](https://tex.z-dn.net/?f=r_o%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Br_e%5E3%7D%7BT_e%5E2%7DT_o%5E2%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%281.50%5Ccdot%2010%5E%7B11%7Dm%29%5E3%7D%7B%28365%20d%29%5E2%7D%28180%20d%29%5E2%7D%3D9.4%5Ccdot%2010%5E%7B10%7D%20m)
Here's the tool you need. You can't answer the question without this:
"1 watt"
means
"1 joule of energy, generated, used, or moved, every second".
So 60 watts = 60 joules per second
Total energy generated,
used, or moved = (power) x (time).
580 joules = (60 watts) x (time)
Divide each side
by (60 watts): Time = (580 joules) / (60 joules/sec)
= (9 and 2/3) seconds .
If you are pushing the coin across the table at a constant rate, the friction of the table and the horizontal force of your hand pushing are equal, and the coin itself moves at a constant rate. If you push a coin and let it go, there is no horizontal force keeping the coin going. Friction slows the coin to a stop. In both cases, the gravitational downward pull of Earth is equally but oppositely resisted by the upward push of table on the coin.