Answer:
x = 41.2 m
Explanation:
The electric force is a vector magnitude, so it must be added as vectors, remember that the force for charges of the same sign is repulsive and for charges of different sign it is negative.
In this case the fixed charges (q₁ and q₂) are positive and separated by a distance (d = 100m), the charge (q₃ = -1.0 10⁻³ C)) is negative so the forces are attractive, such as loads q₃ must be placed between the other two forces subtract
F = F₁₃ - F₂₃
let's write the expression for each force, let's set a reference frame on the charge q1
F₁₃ =
F₂₃ = 
they ask us that the net force be zero
F = 0
0 = F₁₃ - F₂₃
F₁₃ = F₂₃
k \frac{q_1 q_3}{x^2} =k \frac{q_2 q_3}{(d-x)^2}
q1 / x2 = q2 / (d-x) 2
(d-x)² =
x²
we substitute
(100 - x)² = 2/1 x²
100- x = √2 x
100 = 2.41 x
x = 41.2 m
I’m not really sure but I think it’s D type 1 lever
Answer:
53.125m
Explanation:
The displacement of the car, denoted by S, can be calculated using the formula:
S = ut + 1/2at²
Where;
u = initial velocity/speed (m/s)
t = time (s)
a = acceleration (m/s²)
According to the information provided in this question, u = 10m/s, t = 5s, a = 0.25m/s², S = ?
S = ut + 1/2at²
S = (10 × 5) + 1/2 (0.25 × 5²)
S = 50 + 1/2 (0.25 × 25)
S = 50 + 1/2(6.25)
S = 50 + 3.125
S = 53.125m
Answer:
K_{total} = 19.4 J
Explanation:
The total kinetic energy that is formed by the linear part and the rotational part is requested

let's look for each energy
linear
= ½ m v²
rotation
= ½ I w²
the moment of inertia of a solid sphere is
I = 2/5 m r²
we substitute
= ½ mv² + ½ I w²
angular and linear velocity are related
v = w r
we substitute
K_{total} = ½ m w² r² + ½ (2/5 m r²) w²
K_{total} = m w² r² (½ + 1/5)
K_{total} =
m w² r²
let's calculate
K_{total} =
6.40 16.0² 0.130²
K_{total} = 19.4 J
Answer:
10 kg
Explanation:
The question is most likely asking for the mass of the bicycle.
Momentum is the product of an object's mass and velocity. Mathematically:
p = m * v
Where p = momentum
m = mass
v = velocity
Hence, mass is:
m = p / v
From the question:
p = 25 kgm/s
v = 2.5 m/s
Mass is:
m = 25 / 2.5 = 10 kg
The mass of the bicycle is 10 kg.
In case the question requires the Kinetic energy of the bicycle, it can be gotten by using the formula
K. E = ½ * p * v
K. E. = ½ * 25 * 2.5 = 31.25 J