Answer:
Assume two identical cans filled with two types of soup having same mass are rolling down on an inclined plane in same conditions. In terms of inertia different types of soup will indicate different viscosity. The higher viscosity fillings indicates more part of the soup mass is rotating together with the can’s body. This means that for the can with lower viscosity soup has a lower moment of inertia and the can with higher viscosity has higher moment of inertia while the same gravity makes them to roll.
incline angle = θ ; can's mass = m ; Radius of the can's = R , Angular acceleration for Can 1 = α1 ; Angular acceleration for Can 2 = α2
T1 = Inertia of Can with high viscosity soup
T2 = Inertia of Can with low viscosity soup
M1 rolling moment of Can 1
M2 rolling moment of Can 2
equation is given by
T1*α1 = M1 - (a)
T2*α2 = M2 - (b)
M1 = M2 = m*g*R*sin(θ). (c)
as assumed T1 > T2
from the three equation (a), (b) & (c)
the α2 > α1
Angular acceleration of Can 2 is higher than Can 1. Already stated that Can 1 has more viscous soup as compared to Can 2.
The friction force between the box and the incline if the box does not slide down the incline will be 0.577
The force preventing sliding against one another of solid surfaces, fluid layers, and material components is known as friction. There are several kinds of friction: Two solid surfaces in touch are opposed to one another's relative lateral motion by dry friction.
Given the box resting on the inclined plane above has a mass of 20kg and the The incline sits at a 30 degree angle
We have to find the friction force between the box and the incline if the box does not slide down the incline
Since the frictional force F₁ must equal or exceed gravitational force F₂ down the incline:
F₁ = F₂
μmgcosΘ = mgsinΘ
μ = (mgsinΘ)/(mgcosΘ)
μ = tanΘ
μ = 0.577
Hence the friction force between the box and the incline if the box does not slide down the incline will be 0.577
Learn more about friction force here:
brainly.com/question/24386803
#SPJ4
Answer:

Explanation:
<u>Average Acceleration
</u>
Acceleration is a physical magnitude defined as the change of velocity over time. When we have experimental data, we can compute it by calculating the slope of the line in velocity vs time graph.
Note: <em>We cannot see if the time axis is numbered in increments of 1 second, and we'll assume that.
</em>
When
, the graph shows a value of
When
, the object is at rest, 
We compute the average acceleration as




There are a variety of waves from light waves to mechanical waves. Waves can exhibit different effects like the Doppler Effect.
All light waves behave in a similar manner. They either get transmitted, reflected, absorbed, refracted, polarized, diffracted, or scattered based off of the composition of the object and the wavelength of the light.
According to Wikipedia, “One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects.” Mechanical waves are chaotic and its “amplitudes” are measured unusually.
Diffraction is when light bends around objects and spread after passing out through small openings. “Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as light that the eye can see.”-Wikipedia. Here is the formula to Diffraction: <em>d </em>sin <em>θ </em>= <em>nλ</em>
Doppler effect can occur for any type of wave like sound or water waves. An example of this is when we hear a police car with its sirens on, coming towards us. The closer you are to the police car, the higher the wavelength, but the farther away you are, the lower the wavelength.
<em />