1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jlenok [28]
3 years ago
13

Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperatur

e of 80oC. Calculate the average heat transfer coefficient and the heat transfer rate per meter length of pipe.\
Engineering
1 answer:
Lisa [10]3 years ago
3 0

Answer:

Average heat transfer coefficient =  31 kw/m^2 k

Heat transfer rate per meter length of pipe =  116.808 KW

Explanation:

water temperature = 20⁰c,  

free-stream velocity = 1.5 m/s

circular pipe diameter = 2.0 cm = 0.02 m

surface temperature = 80⁰c

A) calculate average heat transfer coefficient

we apply the formula below :

m = αAv

A (area) = \pi /4 (d)^2

m = 10^3 * \pi  / 4 ( 0.02)^2 * 1.5

   = 10^3 * 0.7857( 0.0004) * 1.5

   = 0.4714 kg/s

Average heat transfer coefficient  

h = \frac{m(cp)}{A}  ,  A = \pi DL

L = 1 m , m = 0.4714 kgs , cp = 4.18

back to equation

h = \frac{0.4714*4.18}{\pi * 0.02 }   = 1.970 / 0.0628 = 31.369 ≈ 31 kw/m^2 k

B) Heat transfer rate per meter length of pipe

Q = ha( ΔT ),  a = \pi DL

   = 31 * 0.0628 * ( 80 - 20 )

  = 31 * 0.0628 * 60 = 116.808 KW

You might be interested in
A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De
andreyandreev [35.5K]

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

3 0
3 years ago
Which of the following explains why material properties present challenges for engineers?
Maurinko [17]

Answer:

Explanation:

They are altered by variables such as temperature hence making materials challenging when dealing with them.

4 0
3 years ago
A 5-in.-diameter pipe is supported every 9 ft by a small frame consisting of two members asshown. Knowing that the combined weig
jarptica [38.1K]

Answer:

AC: at D , M_max = 12.25 lb-ft

BC: at E , M_max = 8.75 lb-ft

Explanation:

Given:

- The diameter of the pipe d = 5-in

- The pipe is supported every L = 9 ft of pipe in length

- The weight if the pipe + contents W = 10 lb/ft

Find:

determine the magnitude and location of the maximum bending moment in members AC and BC.

Solution:

- The figure (missing) is given in the attachment.

- We will first determine the external forces acting on each member:

             Section: 9-ft section of pipe.

                     Sum of forces perpendicular to member AC = 0

                     F_d - 0.8*W*L = 0

                     F_d = 0.8*10*9 = 72 lb

                     Sum of forces perpendicular to member BC = 0

                     F_e - 0.6*W*L = 0

                     F_e = 0.6*10*9 = 54 lb

              F_d = 72 lb ,  F_e = 54 lb

- Then we will determine the support reactions for each member AC point A and BC point B.

              Section: Entire Frame.

                    Sum of moments about point B = 0

                    -A_y*(18.75/12) + F_d*(d /2*12) + F_e*((11.25-2.5)/12) = 0

                    -A_y*(1.5625) + 15 + 39.375 = 0

                    A_y = 34.8 lb  

                   Sum of forces in vertical direction = 0

                     A_y + B_y - 0.8*F_d - 0.6*F_e = 0

                     B_y = 0.8*(72) + 0.6*(54) - 34.8

                     B_y = 55.2 lb  

                   Sum of forces in horizontal direction = 0

                     A_x + B_x - 0.6*F_d + 0.8*F_e = 0

                     A_x + B_x = 0

               Section: Member AC

                    Sum of moments about point C = 0

                     F_d*(2.5/12) - A_y*(12/12) - A_x*(9/12) = 0

                     72*2.5 - 34.8*12 - 9*A_x = 0

                     A_x = -237.6 / 9 = - 26.4 lb

                     B_x = - A_x = 26.4 lb

                     A_x = -26.4 lb  ,  B_x = 26.4 lb

- Now we will calculate bending moment for each member at different sections.

               Member AC:

                    From point A till just before point D

                     -0.6*A_x*x - A_y*0.8*x + M = 0

                     15.84*x - 27.84*x + M = 0

                      M = 12*x   ..... max value at D, x = 12.25 in

                      M_max = 12*12.25/12 = 12.25 lb-ft

               Member BC:

                    From point B till just before point E

                     -0.8*B_x*x + B_y*0.6*x + M = 0

                     -21.12*x + 33.12*x + M = 0

                      M = -12*x   ..... max value at E, x = 11.25 - 2.5 = 8.75 in

                      M_max = -12*8.75/12 = -8.75 lb-ft

- The maximum bending moments and their locations are:

                      AC: at D , M_max = 12.25 lb-ft

                      BC: at E , M_max = 8.75 lb-ft

5 0
3 years ago
If using the washer results in the wheel brake units getting wet, ensure that the vehicle is driven for a short distance with th
Elden [556K]

Answer:

whats the question

Explanation:

6 0
2 years ago
Read 2 more answers
Distinguish and describe the stage of the product development life cycle reflected in the following scenario.
Lelu [443]

Answer:Very productive

Explanation:

7 0
3 years ago
Other questions:
  • Select the material used to clean a prototype board before soldering.
    5·1 answer
  • A spherical, stainless steel (k 16 W m1 K-1) tank has a wall thickness of 0.2 cm and an inside diameter of 10 cm. The inside sur
    12·1 answer
  • Is air conditioner a refrigerator?
    10·1 answer
  • The minimum safe working distance from exposed electrical conductors
    13·1 answer
  • Which one of the following activities is not an example of incident coordination
    15·1 answer
  • State five applications of thermochromic materials
    11·1 answer
  • Does anyone know obamas last name???? please help its for a friend I swear!!!111!!11!
    8·1 answer
  • Why might many general contractors begin their careers as construction workers?
    9·1 answer
  • I need to solve for d
    11·2 answers
  • In which type of shoot is continuous lighting used?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!