Answer:
See explanation
Explanation:
Solution:-
- The shell and tube heat exchanger are designated by the order of tube and shell passes.
- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.
- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.
- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.
- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:
U ∝ v^( 0.8 ) .... ( turbulence )
- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.
Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).
Answer:
Automotive Technology Program
Explanation:
Basically hiring students for hands on training to learn the basics of mechanics.
C because i know what i’m taking about
Answer:
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Explanation:
Conservation momentum, when ball A strikes Ball B
Where,
M= Mass
V= Velocity
Ma(VA)1+ Mg(Vg)2= Ma(Va)2+ Ma(Vg)2
MV + 0= MVg2
Coefficient of restitution =
e= (Vg)2- (Va)2/(Va)1- (Vg)1
e= (Vg)2- (Va)2/ V-0
Solving equation 1 and 2 yield
(Va)2= V(l-e) /2
(Vg)2= V(l+e)/2
Conservative momentum when ball b strikes c
Mg(Vg)2+Mc(Vc)1 = Mg(Vg)3+Mc(Vc)2
=> M[V(l+e) /2] + 0 = M(Vg)3 + M(Vc) 2
Coefficient of Restitution,
e= (Vc)2 - (Vg)2/(Vg)2- (Vc)1
=> e= (Vc)2 - (Vg)2/V(l+e) /2
Solving equation 3 and 4,
Vc2= V(l+e) ^2/4
Vg2= V(l-e^2)/4
Answer:
While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle.
Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.