1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
3 years ago
9

HfrrghhJbfrfefefft nbgyjjiutrwdgju

Engineering
1 answer:
Tasya [4]3 years ago
4 0

Answer:

hshdhriwjajaldh skshdjdywuusg

Explanation:

null

You might be interested in
How wold you classify the earliest examples of S.T.E.M discoveries provided in this lesson?
Gnoma [55]

Answer:

the answer is C

Explanation:

8 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
3 years ago
An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The
Mila [183]

Answer:

a) Current drawn by the toaster = 15A

Current drawn by the electric frying pan = 11.67A

Current drawn by the lamp = 0.625A

b) This combination will blow the 15A fuse as the total current requirement for this setup exceeds the 15A rating of the fuse.

Explanation:

a) For parallel connection, there exists, the same voltage and different currents across all the devices.

Voltage cross each of the 3 devices = outlet voltage of 120V

From their respective power rating, current drawn by each device will be calculated.

P = IV

For the toaster, P = 1800 W, V = 120V

I = 1800/120 = 15A

For the electric frying pan, P = 1400 W, V = 120 V

I = 1400/120 = 11.67 A

For the lamp, P = 75 W, V = 120V

I = 75/120 = 0.625 A

b) Total current in a parallel connection setup = Sum total of all the currents.

Total current drawn by all 3 devices = 15 + 11.67 + 0.625 = 27.295A = 27.3 A

This total current requirement surpasses the 15A current rating of the fuse, therefore, this combination will blow the fuse.

Hope this Helps!!!

6 0
3 years ago
A screw is a simple machine that can be described as an inclined plane wrapped around a cylinder.
Phoenix [80]

Answer:

thanks thanks thanks thanks

Explanation:

7 0
3 years ago
What is the primary function of NCEES?
charle [14.2K]

Answer:

It is a non profit organization that dedicates to licensing professional engineers and surveyors

Explanation:

6 0
3 years ago
Other questions:
  • Water flows through a horizontal plastic pipe with a diameter of 0.15 m at a velocity of 15 cm/s. Determine the pressure drop pe
    11·1 answer
  • Name two types of battery chargers that are used in mechanics
    14·1 answer
  • If you are a government authority what extend will you modify the existing policy
    11·1 answer
  • (8 points) Consider casting a concrete driveway 40 feet long, 12 feet wide and 6 in. thick. The proportions of the mix by weight
    8·1 answer
  • Consider a potato being baked in an oven that is maintained at a constant temperature. the temperature of the potato is observed
    14·1 answer
  • The formula for the cross sectional area of specimen at the middle is
    5·1 answer
  • An isothermal CSTR with a first order irreversible reaction A â> B (and rA[mol/(ft3*min)] = - 0.5 CA) has a constant flow rat
    13·1 answer
  • Why is California a good place for engineers to build suspension bridges?
    12·1 answer
  • Which - type of service shop is least likely to provide service to all
    9·1 answer
  • Draw a surface development of a truncated cone
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!