Answer:
acceleration = 0.2625 m/s²
Explanation:
acceleration = ( final velocity - initial velocity ) / time
Here the final velocity is 10.6 m/s and initial velocity is 6.4 m/s and time is 16 s.
using the equation:
acceleration = ( 10.6 - 6.4 ) / 16
= 0.2625 m/s²
Answer
What makes up a perfect planet? It is the right distance from the Sun, it is protected from harmful solar radiation by its magnetic field, it is kept warm by an insulating atmosphere, and it has the right chemical ingredients for life, including water and carbon. Proportionate Ozone Layer and Light amount. According to the panspermia hypothesis, microscopic life—distributed by meteoroids, asteroids and other small Solar System bodies—may exist throughout the Universe. This is the perfect planet. In the end a perfect planet includes SUSTAINBLE DEVELOPEMNT IN EVERY ASPECT OF LIFE!
Explanation:
Answer:
12 ml
Explanation:
The initial volume in the cylinder is 20 ml
adding the rock adds volume to the cylinder
the new volume is 32 ml .....the increase in volume is the volume of the rock : 32 - 20 = 12 ml volume of rock
Answer:
(a): 
(b): 
(c): 
Explanation:
Given that an electron revolves around the hydrogen atom in a circular orbit of radius r = 0.053 nm = 0.053
m.
Part (a):
According to Coulomb's law, the magnitude of the electrostatic force of interaction between two charged particles of charges
and
respectively is given by

where,
= Coulomb's constant = 
= distance of separation between the charges.
For the given system,
The Hydrogen atom consists of a single proton, therefore, the charge on the Hydrogen atom, 
The charge on the electron, 
These two are separated by the distance, 
Thus, the magnitude of the electrostatic force of attraction between the electron and the proton is given by

Part (b):
The gravitational force of attraction between two objects of masses
and
respectively is given by

where,
= Universal Gravitational constant = 
= distance of separation between the masses.
For the given system,
The mass of proton, 
The mass of the electron, 
Distance between the two, 
Thus, the magnitude of the gravitational force of attraction between the electron and the proton is given by

The ratio
:

With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.