Answer:
The photon has a wavelength of
Explanation:
The speed of a wave can be defined as:
(1)
Where v is the speed,
is the frequency and
is the wavelength.
Equation 1 can be expressed in the following way for the case of an electromagnetic wave:
(2)
Where c is the speed of light.
Therefore, 
can be isolated from equation 2 to get the wavelength of the photon.
(3)

Hence, the photon has a wavelength of
<em>Summary: </em>
Photons are the particles that constitutes light.
Assuming this is an elastic collision, they go in the direction of the object with more mass
Answer:
(a) 37.5 kg
(b) 4
Explanation:
Force, F = 150 N
kinetic friction coefficient = 0.15
(a) acceleration, a = 2.53 m/s^2
According to the newton's second law
Net force = mass x acceleration
F - friction force = m a
150 - 0.15 x m g = m a
150 = m (2.53 + 0.15 x 9.8)
m = 37.5 kg
(b) As the block moves with the constant speed so the applied force becomes the friction force.

Answer:
b) false
Explanation:
Since in the given situation it is mentioned that the mass conversation would be simple and same applied to the fluids with care also the conservation of momentum would be applied to any type of closed system like collisions
But as we know that
In the inelastic collisions, the total kinetic energy would not be remain conserved
So the given statement is false