The given values are the following:
initial velocity = 7.0 m/s
<span>acceleration </span> = .80 m/s^2
t = 2.0 s
The final velocity is calculated by using the equation expressed as:
vf = vo + at
vf = 7.0 + .80(2)
vf = 8.6 m/s
if it takes 1 second to move from x to y. You haven't specified if x and y are extreme point or x is extreme and y is equilibrium point
I.If both are extreme points the period is T=1*2=2s
f(frequency)=2π/T(period)
f=6.28/2=3.14Hz
II.If x is an extreme point and y is equilibrium
T=4*1=4s
f=6.28/4=1.57Hz
1. An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg•m/s, how fast is it traveling?
momentum = mass x velocity
16 = 8 x velocity
velocity = 2 m/s
2.A beach ball is rolling in a straight line toward you at a speed of 0.5 m/sec. Its momentum is 0.25 kg•m/s. What is the mass of the beach ball?
momentum = mass x velocity
0.25 = m x 0.5
mass = 0.5 kg
3.A 4,000-kilogram truck travels in a straight line at 10.0 m/s. What is its momentum?
Momentum = (mass) x (speed) = (4,000) x (10) = 40,000 kilogram-meters/second
4.A 1,400-kilogram car is also traveling in a straight line. Its momentum is equal to that of the truck in the previous question. What is the velocity of the car?
40,000 kilogram-meters/second = 1400 x velocity
velocity = 28.6 m/s
5.Which would take more force to stop in 10 seconds: an 8.0-kilogram ball rolling in a straight line at a speed of 0.2 m/s or a 4.0-kilogram ball rolling along the same path at a speed of 1.0 m/s?
F1 = 8 x 0.2 / 10 = 0.16 N
F2 = 4 x 1.0 / 10 = 0.4 N ----> take more force
6.The momentum of a car traveling in a straight line at 20 m/s is 24,500 kg•m/s. What is the car’s mass?
24500 = mass x 20
mass = 1225 kg
7.Another pitcher throws the same baseball in a straight line. Its momentum is 2.1 kg•m/s. What is the velocity of the ball?
2.1 = 0.5 x velocity
velocity = 4.2 m/s
8 A 1-kilogram turtle crawls in a straight line at a speed of 0.01 m/s. What is the turtle’s momentum?
momentum = 1 x 0.01 = 0.01 kg m/s
Answer:
The mechanical energy of the helicopter is
.
Explanation:
It is given that,
Mass of the helicopter, m = 3250 kg
Speed of the helicopter, v = 56.9 m/s
Position of the helicopter, h = 185 m
The energy possessed by an object due to its motion is called its kinetic energy. It is given by :


The energy possessed by an object due to its position is called its potential energy. It is given by :


The sum of kinetic and potential energy is called mechanical energy of the system. It is given by :


or

So, the mechanical energy of the helicopter is
. Hence, this is the required solution.
It’s actually C. homogeneous compound because when they combine you can’t separate them