Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current 
According to ohm's law, V = IR
R = V/I
Here, 

For the second measurement, current 


b) ![y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%26y_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%20%5E%7BT%7D)
![y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dy_%7B1%7D%20%5C%5Cy_%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D)
![y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
![x = \left[\begin{array}{ccc}100\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-3%7D%20%5C%5C97%2A10%5E%7B-3%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D100%5Cend%7Barray%7D%5Cright%5D%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DG_%7B1%7D%20%5C%5CG_%7B2%7D%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D102%2A10%5E%7B-5%7D%20%5C%5C97%2A10%5E%7B-5%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
Answer:
the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Explanation:
Given that;
weight of vehicle = 4000 lbs
we know that 1 kg = 2.20462
so
m = 4000 / 2.20462 = 1814.37 kg
Initial velocity
= 60 mph = 26.8224 m/s
Final velocity
= 30 mph = 13.4112 m/s
now we determine change in kinetic energy
Δk =
m(
² -
² )
we substitute
Δk =
×1814.37( (26.8224)² - (13.4112)² )
Δk =
× 1814.37 × 539.5808
Δk = 489500 Joules
we know that; 1 kilowatt hour = 3.6 × 10⁶ Joule
so
Δk = 489500 / 3.6 × 10⁶
Δk = 0.13597 ≈ 0.136 kWh
Therefore, the theoretical maximum energy in kWh that can be recovered during this interval is 0.136 kWh
Answer:
240m/s
Explanation:
The equation to calculate is wavelength= velocity/ frequency so to find the velocity you would have to multiply frequency by wavelength.
Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
What exactly do u want me to do for u mam/sir