Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases




Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Friction? For example, like when a car's tires skid on rough concrete.
Jupiter, Saturn, Uranus and Neptune collectively make up the group known as the jovian planets. The general structures of the jovian planets are opposite those of the terrestrial planets. Rather than having thin atmospheres around relatively large rocky bodies, the jovian planets have relatively small, dense cores surrounded by massive layers of gas. Made almost entirely of hydrogen and helium, these planets do not have solid surfaces.
I believe the answer should be D