We know that
the equation of the parabola is of the form
y=ax²+bx+c
in this problem
y=1/4x²−x+3
where
a=1/4
b=-1
c=3
the coordinates of the focus are
(-b/2a,(1-D)/4a)
where D is the discriminant b²-4ac
D=(-1)²-4*(1/4)*3-----> D=1-3---> D=-2
therefore
x coordinate of the focus
-b/2a----> 1/[2*(-1/4)]----> 2
y coordinate of the focus
(1-D)/4a------> (1+2)/(4/4)---> 3
the coordinates of the focus are (2,3)
First, lets start with the greatest 4-digit number. That would be 9,999.99999999999, with 9 to ∞, because the next number is a 5-digit number. The smallest 6-digit number is 100,000, because the number preceding 100,000 is a 4 digit number. To find difference, you have to subtract. 100,000 minus 9,999.9999 continued gives you 90,000.000000 to ∞ with a one with 1 at the end. You would write 90,000.01 with bar notation over only the 0 to indicate that it goes on to infinity.
The length of the KN is 4.4
Step-by-step explanation:
We know from Pythagoras theorem
In a right angle ΔLMN
Base² + perpendicular² = hypotenuse
²
From the properties of triangle we also know that altitudes are ⊥ on the sides they fall.
Hence ∠LKM = ∠NKM = 90
°
Given values-
LM=12
LK=10
Let KN be “s”
⇒LN= LK + KN
⇒LN= 10+x eq 1
Coming to the Δ LKM
⇒LK²+MK²= LM²
⇒MK²= 12²-10²
⇒MK²= 44 eq 2
Now in Δ MKN
⇒MK²+ KN²= MN²
⇒44+s²= MN² eq 3
In Δ LMN
⇒LM²+MN²= LN²
Using the values of MN² and LN² from the previous equations
⇒12² + 44+s²= (10+s)
²
⇒144+44+s²= 100+s²+20s
⇒188+s²= 100+s²+20s cancelling the common term “s²”
⇒20s= 188-100
∴ s= 4.4
Hence the value of KN is 4.4
17/16 is the answer since 1/2 is equal to 8/16. 8+9 is 17
Mr.Thompson's account will be worth $9,562.50 after 10 years.