Answer:
Explanation:
The magnitude of the acceleration makes an angle of 30° with the tangential velocity.
Resolving the acceleration to tangential and radial acceleration
at = aCos30 = √3a/2
ar = aSin30 = ½a
a = 2•ar
Then, the tangential acceleration is the linear acceleration, so the relationship between the tangential acceleration and angular acceleration is given as:
at = Rα
Then, α = at/R
since at = √3a/2
Then, α = √3 at/2R, equation 1
The radial acceleration is given as
ar = ω²R
Note that, at² + ar² = a²
at = √(a²-ar²)
Back to equation 1
α = √3 at/2R
α = √3√(a²-ar²)/2R
α = √3√(a²-(w²R)²)/2R
α = √3(a²-w⁴R²) / 2R
Also, a = 2•ar = 2w²R
Then,
α = √3((2w²R)²-w⁴R²) / 2R
α = √3(4w⁴R²-w⁴R²) / 2R
α = √3(3w⁴R²) / 2R
α = √9w⁴R² / 2R
α = 3w²R / 2R
α = 3w²/2
You need to give more info to your answer so i can help u
Given that:
Energy of bulb (Work ) = 30 J,
Time (t) = 3 sec
The power consumption = ?
We know that, Power can be defined as rate of doing work
Power (P) = Work(Energy supplied) ÷ time
= 30 ÷ 3
= 10 Watts
<em> The power consumption is 10 W.</em>
Exercise stimulates the production of neurotransmitters that produce feelings of well-being. Exercise promotes an improved body image and increased self-confidence levels.
Answer:
Right Hand Rule
Explanation:
When a charged particle travels in a magnetic field, it experiences a force whose magnitude is given by:

where
q is the charge of the particle
v is the velocity
B is the magnetic field strength
is the angle between the directions of v and B
The direction of the force can be determined by using the Right Hand Rule, as follows:
- index finger: this should be put in the direction of the velocity
- middle finger: this should be put in the direction of the magnetic field
- thumb: this will give the direction of the force -> however, for a negative charge (as the electron) the direction must be reversed, so it will be opposite.