In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
<span>When reading a buret, the initial reading should be taken from the top of the glassware and the final volume should still taken at the top. If the buret is completely, the initial volume for most buret would be zero. though, there are some where their initial starts at 50 decreasing to zero.</span>
1.5 m/s is the velocity.
9.3 m is the length of aisle, over which Distance will be covered.
Time is demanded in which the child will move the cart over the aisle with 1.5 m/s.
v=S/t
and,
t=S/v
Put values,
t=9.3/1.5=6.2 s
1. I think it's the trails left by an electron as it moves around the nucleus.
2. The atomic number is the number of protons so it is 8.
3. It's mass is lowered but it is still the same element.
All ions are atoms with a charge