Answer:
(D) Interference
Explanation:
Interference is a phenomenon characteristic for waves. When two waves meet, they interfere and result in a new wave. The precise shape of the resultant wave depends on the amplitude, frequency and phase of the constituent waves. In a most basic setting, two types of interference occur: constructive (resultant amplitude increases) and destructive (resultant amplitude decreases).
Answer:
The force is "19 µN".
Explanation:
The lane's j-component is meaningless, as the current is flowing in the -j line.
Therefore the power is now in the direction of + z (out of the page if x and y are in the page plane) and has the magnitude.

Answer:
The possible frequencies for the A string of the other violinist is 457 Hz and 467 Hz.
(3) and (4) is correct option.
Explanation:
Given that,
Beat frequency f = 5.0 Hz
Frequency f'= 462 Hz
We need to calculate the possible frequencies for the A string of the other violinist
Using formula of frequency
...(I)
...(II)
Where, f= beat frequency
f₁ = frequency
Put the value in both equations


Hence, The possible frequencies for the A string of the other violinist is 467 Hz and 457 Hz.
Answer:
a
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
b
Explanation:
Generally from third equation of motion we have that
![v^2 = u^2 + 2a[s_i - s_f]](https://tex.z-dn.net/?f=v%5E2%20%3D%20%20u%5E2%20%2B%202a%5Bs_i%20-%20s_f%5D%20)
Here v is the final speed of the car
u is the initial speed of the car which is zero
is the initial position of the car which is certain height H
is the final position of the car which is zero meters (i.e the ground)
a is the acceleration due to gravity which is g
So
=> 
When
we have that

=> 
=>
Hello,
To solve we need to know the formula for speed
The formula is D/T=S (Distance of time=speed)
Now all we have to do is plug in the numbers.
20/40= 1/2 or 0.5
SO the speed is 0.5 m/s
Have a great day!