Answer:
51.82
Explanation:
First of all, let's convert both vectors to cartesian coordinates:
Va = 36 < 53° = (36*cos(53), 36*sin(53))
Va = (21.67, 28.75)
Vb = 47 < 157° = (47*cos(157), 47*sin(157))
Vb = (-43.26, 18.36)
The sum of both vectors will be:
Va+Vb = (-21.59, 47.11) Now we will calculate the module of this vector:

Answer:
T = 1.2 s
T = 15.1 m = 15 m
Explanation:
This is a case of projectile motion:
TOTAL TIME OF FLIGHT:
The formula for total time of flight in projectile motion is:
T = 2 V₀ Sinθ/g
where,
T = Total Time of Flight = ?
V₀ = Launch Speed = 13.9 m/s
θ = Launch Angle = 25°
g = 9.8 m/s²
Therefore,
T = (2)(13.9 m/s)(Sin 25°)/(9.8 m/s²)
<u>T = 1.2 s</u>
<u></u>
RANGE OF BALL:
The formula for range in projectile motion is:
R = V₀² Sin2θ/g
where,
R = Horizontal Distance Covered by ball = ?
Therefore,
T = (13.9 m/s)²(Sin 2*25°)/(9.8 m/s²)
<u>T = 15.1 m = 15 m</u>
Answer:
Biomass-Total of mass of organisms in a given area/volume
Biofuel-A fuel directly from living matter.
Answer:
star
Explanation:
because that is what our sun is.
Answer:
Final velocity will be equal to 14 m/sec
Explanation:
We have given initial velocity u = 5 m/sec
Constant acceleration is given 
Time t = 6 sec
We have to find the final velocity
From first equation of motion
, here v is final velocity, u is initial velocity , a is acceleration and t is time
So 
So equal final velocity will be equal to 14 m/sec