1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
3 years ago
11

Einstein's equation E=mc2 helps scientists understand the sun's energy because the equation..

Physics
2 answers:
scZoUnD [109]3 years ago
7 0
B.

This equation quantifies the inter convertibility of mass and energy and helps us understand the large amount of energy that would be released if mass were converted to energy.<span />
Flauer [41]3 years ago
6 0
B. explains how mass can be converted into huge amounts of energy.
You might be interested in
The diameter of circular park is 80 m find its area​
Drupady [299]
Explanation:to find the area you must first find the radius given you have the diameter you cut the diameter in half giving you 40 then you follow the formula “A= (pie)r (squared) leaving you with

answer:5024
6 0
3 years ago
At each corner of a square of side l there are point charges of magnitude Q, 2Q, 3Q, and 4Q.What is the magnitude and direction
lbvjy [14]

Answer:

F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

|F_T|=2\sqrt{34}k\frac{Q^2}{L}

\theta=tan^{-1}(\frac{5}{3})=59.03\°

Explanation:

I attached an image below with the scheme of the system:

The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:

F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]

the distances R1, R2 and R3, for a square arrangement is:

R1 = L

R2 = L

R3 = (√2)L

θ = 45°

F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

and the magnitude is:

|F_T|=2k\frac{Q^2}{L}\sqrt{3^2+5^2}=2\sqrt{34}k\frac{Q^2}{L}

the direction is:

\theta=tan^{-1}(\frac{5}{3})=59.03\°

4 0
2 years ago
During the experiment it is determined that, as the cart rolls between two points on the track, the work done on the cart by the
natita [175]

Answer:

Explanation:

If the work done on the cart is NET work

Then the work will result in an increase in kinetic energy

KE₀ + W = KE₁

½mv₀² + W = ½mv₁²

½(0.80)(0.61²) + 0.91 = ½(0.80)v₁²

v₁ = 1.626991...

v₁ = 1.6 m/s

4 0
2 years ago
Whose geocentric model was accepted for 1400 years
zysi [14]
<span>IDK the answer but I think it was "Ptolemy" whose geocentric model of the solar system was accepted for 1,400 years, and was embraced by the the Church until Galileo called it into question.</span>
8 0
3 years ago
A 44-turn rectangular coil with length ℓ = 17.0 cm and width w = 8.10 cm is in a region with its axis initially aligned to a hor
Mumz [18]

Answer:

The maximum induced emf in the rotating coil  = 29.66V

The induced emf in the rotating coil when (t = 1.00 s) = 26.66V

The maximum rate of change of the magnetic flux through the rotating coil = 0.674Wb/s

Explanation:

Lets state the parameters we are being given right from the question:

Number of rectangular coil, (N) = 44

Length of Coil, l =17cm in meters we have; (l) = 17 × 10⁻² m

Width of Coil, w =8.10cm in meters we have; (w) = 8.10 × 10⁻² m

Magnitude of Uniform Magnetic Field (B) = 767mT= 765 × 10⁻³ T

Angular Speed of Coil, (ω) = 64 rad/s

(a)

To calculate the induced emf in the rotating cell,we can use the formula:

emf = NBAωsin(ωt)

For maximum induced emf, the value of sin(ωt) will be 1

emf_max = NBAω ; if (A = l × w) , we have:

emf_max  = NB(l × w)ω

subsitituting the parameters into the above equation; we have:

emf_max  = 44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64

= 29.66V

(b)

At t = 1s, the induced emf is calculated as:

emf = NBAωsin(ωt)

substituting the parameters into the equation, we have:

emf =   44 × 765 × 10⁻³ ( 17 × 10⁻² × 8.10 × 10⁻² ) × 64 × sin (64 × 1)

=26.66V

(c)

To calculate the maximum rate of change of the magnetic flux through the rotating coil; we need to reflect on the equation for the maximum induced emf in terms of magnetic flux.

i.e emf_max = N\frac{d∅}{dt}

since emf_max = 29.66 and N = 44; we have:

29.66 =  44\frac{d∅}{dt}

\frac{d∅}{dt} = \frac{29.66}{44}

= 0.674 Wb/s

5 0
3 years ago
Other questions:
  • A + B → C + D
    7·2 answers
  • Which of the following actions is best understood using Einstein's concepts rather than Newtonian physics?
    10·2 answers
  • A gauge is reading the pressure at the bottom of a river, at a depth of 6 m. Would the reading be greater or smaller than the re
    15·1 answer
  • give three examples from the device on the apply page where potential energy was converted to kinetic energy
    9·1 answer
  • If the air temperature is 20°C and the relative humidity is 58% what is the dewpoint
    10·1 answer
  • A light bulb is left on for an hour and has a power of 0.1KW. How much did it cost?
    12·1 answer
  • Which is a TRUE statement about a series circuit
    8·1 answer
  • Does anyone know how to solve this??
    6·1 answer
  • What is the energy contained in a 0.950 m3 volume near the Earth's surface due to radiant energy from the Sun?
    6·1 answer
  • What is the original source of energy for tidal power schemes?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!