Answer: 1896.55J/kg°C
Explanation:
The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 1320 joules
Mass of material = 5.61kg
C = ? (let unknown value be Z)
Φ = 0.124°C
Then, Q = MCΦ
1320J = 5.61kg x Z x 0.124°C
1320J = 0.696kg°C x Z
Z = (1320J / 0.696kg°C)
Z = 1896.55 J/kg°C
Thus, the specific heat of the material is 1896.55J/kg°C
Answer:
4
Explanation:
We know that intensity I = P/A where P = power and A = area through which the power passes through.
Now, let the initial intensity of the speaker be I₀ and its initial power be P₀. Since the intensity is increased by a factor of 4, the new intensity be I and new power be P.
So, I = P/A and I₀ = P₀/A
Now, if I = 4I₀,
P/A = 4P₀/A
P = 4P₀
Now, energy E = Pt, where t = time. So, P = E/t and P₀ = E₀/t
Substituting P and P₀ into the equation, we have
P = 4P₀
E/t = 4E₀/t
E = 4E₀
Since the energy is four times the initial energy, the energy output increases by a factor of 4.
Answer:

West
Explanation:
m = Mass of car = 
t = Time = 9 seconds
u = Initial velocity = 30 m/s
v = Final velocity = 0
Impulse is given by

The magnitude of the total impulse applied to the car to bring it to rest is
.
The direction is towards west as the sign is negative.
Answer:
Both are true under specific circumstances. And are related to Boyle's law. volume and pressure in a gas are inversely proportional.
Explanation:
There is a tendency to entropy in our reality, that is, in particular true and visible with gases, they tend to occupy the whole space where they are confined, when we heat a volume of gas, then the movement of the particles and in consequence the pressure of the gas increases and to compensate this the volume tends to be increased too, according to Boyle's law. And the opposite happens when the volume is increased, then the pressure is relieved and since the particles are further one from each other, then the temperature is lower, and therefore it cools down.