Answer:
A. scatter plot?
Explanation:
I dont really know if I'm right... sorry.
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Explanation:
Q1) What is the speed of the tip of the minute hand of a clock where the hand is of length 7cm?
Ans1) speed, v=st=2πrT=2×227×7×10-260×60=119×10-4=1.22×10-4m/s
<h2>
<em><u>Hope it helps</u></em></h2>
Answer:
Light passes through the gas
Light passes through the pure water
Light passes through some solids
Explanation:
In gasses, there are many spaces between the molecules. These spaces allow light to pass through them without any interruption.
In pure water, there are some spaces between particles. these particles allow some light rays to pass theough, some to move through the common boundary and reflec5 some of them.
in solids, some allow light to pass through as they are transparent or translucent
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation: