Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
You use acceleration due to gravity
and 1/2 atsqr=d
therefore 1/2 * 9.8 * tsqr= d
Hello,
Here is your answer:
The proper answer to this question is "because of there substantial size the rock rests on another rock which keeps it balanced".
If you need anymore help feel free to ask me!
Hope this helps!
Answer:
Distance traveled will be 5.6307 m
Explanation:
Time t = 3 sec
We have given force F = 25 N
We know that force is given by F = ma
So ma = 25 -----------eqn 1
Weight is given by W = 196 N
We know that weight is given by W = mg
So mg = 196 -----------------eqn 2
From equation 1 and equation 2 

Initial velocity is given as 0 so u = 0 m/sec
From second equation of motion 
Fortunately, 'force' is a vector. So if you know the strength and direction
of each force, you can easily addum up and find the 'resultant' (net) force.
When we talk in vectors, one newton forward is the negative of
one newton backward. Hold that thought, while I slog through
the complete solution of the problem.
(100 N forward) plus (50 N backward)
= (100 N forward) minus (50 N forward)
= 50 N forward .
That's it.
Is there any part of the solution that's not clear ?