Answer:
A) and B) are correct.
Explanation:
If the object is at rest, it means that no net force is exerted on it.
As the object experiences a downward gravitational force from Earth, in order to be at rest, it must experience an upward force with the same magnitude as the gravitational force on the object.
This force is supplied by the normal force, which can adopt any value in order to meet the condition imposed by Newton´s 2nd Law, and is always perpendicular to the surface on which the object is placed (in this case, the ground).
At a molecular level, this normal force is supplied by the bonded molecules of the ground that behave like small springs being compressed by the molecules of the object, exerting an upward restoring force upward on them.
So, the statements A) and B) are true.
Answer:
My greatest scientist is David Baltimore.
Explanation:
David Baltimore is an American biologist, university administrator, and 1975 Nobel laureate in Physiology or Medicine. He is currently President Emeritus and Distinguished Professor of Biology at the California Institute of Technology, where he served as president from 1997 to 2006.
Hope I helped! Ask me anything if you have any questions. Brainiest plz!♥ Hope you make a 100%. Have a nice morning! -Amelia♥
Answer:
I'dont know sooooooooooooooooooooooorrrrrrrrrrrrrrrrry
Answer:
Height of tree = 78.35 meters.
Explanation:
We have
1 meter = 3.28 feet
That is

Here height of tree = 257 ft
Height of tree = 257 x 0.3048 = 78.35 m
Height of tree = 78.35 meters.
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1