Answer:
The fluid property responsible for the development of velocity boundary layer is majorly the fluid's viscosity.
For non-viscous fluids (in theory, because no fluid is entirely non-viscous), there will be no velocity boundary layer.
Explanation:
The velocity boundary layer is the thin layer of viscous fluid that is in direct contact with the pipe surface. The velocity of fluid in this layer is 0 as fluid doesn't move in this layer.
This phenomenon is due to the viscosity of the fluid. Viscosity of the fluid refers to the internal friction that exists between fluid layers, so, the layer of fluid in contact with non-moving, static surface of the pipe experiences friction that causes this layer to not move, causing the fluid velocity to vary from 0 at this surface to the maximum value at the centre of the pipe, before the velocity begins to drop again until it reaches 0 at the other end of the circular pipe.
Since viscosity is the primary cause of this, non-viscous or inviscid fluids are saved from this phenomenon as their flows do not have the velocity boundary layer.
Although, a completely non-viscous or inciscid fluid is an idealized concept because all fluids will experience some sort of viscosity (no matter how small) between their fluid layers. Hence, a velocity boundary layer, no matter how thin (or of minute thickness), will exist in the flow of real fluids.
But, an idealized non-viscous or inviscid fluid will not have a velocity boundary layer.
Hope this Helps!!!
Answer: um wuh anyways thxs for the points!
Explanation: ....:/
Answer: The correct answer is hidden lines.
Explanation:
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
Answer:
The charpy test is used to determine amount of energy a material absorbs at fracture.
Explanation:
Charpy Impact test was developed by a French scientist to determine the amount of energy a material absorbs at fracture hence giving the toughness of the material. It is widely used in industrial applications since it is easy to perform and does not requires sophisticated equipment to perform.
The test is performed when a swinging pendulum of known weight is dropped from a known height and is made to strike the metal specimen which is notched.The notch in the sample affects the results of the test hence the notch should be standardized while performing the test. The qualitative results obtained can also be used to compare ductility of different materials.