1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elena-14-01-66 [18.8K]
3 years ago
9

Argue the importance to society of incorporating green building into an engineer’s designs, with at least two examples.

Engineering
1 answer:
klio [65]3 years ago
3 0
It is important because now a days we all need help from engineers
You might be interested in
PLEASE HELP!! Its easy!!!
Rina8888 [55]

Answer:

C is tire

F is cassette

D is hub

4 0
3 years ago
Read 2 more answers
I WILL GIVE 20 POINTS!!
Alex777 [14]

Answer:

Use a resume header

Explanation:

Create a Summary

Research industry, employer keywords

there are some hints okay

5 0
3 years ago
Read 2 more answers
One good way to improve your gas Milage is to ___.
VashaNatasha [74]

Answer: B

Explanation:

One good way to improve your gas mileage is to accelerate smoothly and directly to a safe speed.

Hope this helps!

5 0
3 years ago
Read 2 more answers
Instead of running blood through a single straight vessel for a distance of 2 mm, one mammalian species uses an array of 100 tin
Marina CMI [18]

Solution:

Given that :

Volume flow is, $Q_1 = 1000 \ mm^3/s$

So, $Q_2= \frac{1000}{100}=10 \ mm^3/s$

Therefore, the equation of a single straight vessel is given by

$F_{f_1}=\frac{8flQ_1^2}{\pi^2gd_1^5}$    ......................(i)

So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is

$\frac{\pi d_1^2}{4}=1000 \times\frac{\pi d_2^2}{4} $

or $d_1=10 \ d_2$

Now for parallel pipes

$H_{f_2}= (H_{f_2})_1= (H_{f_2})_2= .... = = (H_{f_2})_{10}=\frac{8flQ_2^2}{\pi^2 gd_2^5}$  ...........(ii)

Solving the equations (i) and (ii),

$\frac{H_{f_1}}{H_{f_2}}=\frac{\frac{8flQ_1^2}{\pi^2 gd_1^5}}{\frac{8flQ_2^2}{\pi^2 gd_2^5}}$

       $=\frac{Q_1^2}{Q_2^2}\times \frac{d_2^5}{d_1^5}$

       $=\frac{(1000)^2}{(10)^2}\times \frac{d_2^5}{(10d_2)^5}$

       $=\frac{10^6}{10^7}$

Therefore,

$\frac{H_{f_1}}{H_{f_2}}=\frac{1}{10}$

or $H_{f_2}=10 \ H_{f_1}$

Thus the answer is option A). 10

7 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
Other questions:
  • A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory
    7·1 answer
  • Gas is kept in a 0.1 m diameter cylinder under the weight of a 100 kg piston that is held down by a spring with a stiffness k =
    11·1 answer
  • What is the difference between tension and compression?
    9·1 answer
  • Design a posttest-only experiment that would test each of the following causal claims. For each one, identify the study’s indepe
    13·1 answer
  • Create a C language program that can be used to construct any arbitrary Deterministic Finite Automaton corresponding to the FDA
    6·1 answer
  • The collar A, having a mass of 0.75 kg is attached to a spring having a stiffness of k = 200 N/m . When rod BC rotates about the
    15·1 answer
  • when a metal, such as lead, is oxidied (loses electrons) to form a positive ion (cation), how does he solubility change?
    14·1 answer
  • The air velocity in the duct of a heating system is to be measured by a Pitot-static probe inserted into the duct parallel to th
    13·1 answer
  • A 132mm diameter solid circular section​
    5·1 answer
  • Which sentence is correct about the exergy of an empty (pressure around zero Pascal) tank with a volume of V, located in an envi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!