Answer:
It will take 313.376 sec to raise temperature to boiling point
Explanation:
We have given that potential difference V = 120 Volt
Current i = 4.50 A
So resistance 
Heat flow in resistor will be equal to 
It is given that this heat is used for boiling the water
Mass of the water = 0.525 kg = 525 gram
Specific heat of water 4.186 J/gram/°C
Initial temperature is given as 23°C
Boiling temperature of water = 100°C
So change in temperature = 100-23 = 77°C
Heat required to raise the temperature of water 
So 
t = 313.376 sec
So it will take 313.376 sec to raise temperature to boiling point
Caribbean:
Habana ... Cuba
San Juan ... Puerto Rico
San Jose ... Costa Rica
Other:
Lima ... capital of Peru in South America
Equatorial Guinea ... country in Africa
30000 btuh /3413 btuh/kw. = 8.8 kw
8.8 kw/.746 kw/hp = 11.8 hp if COP is 1
11.8/3 hp (COP coefficient of performance) = 3.99 COP
>>>So yes a 3.0 hp compressor with a nominal COP of 4 will handle the 30,000 btuh load.
3.2 to 4.5 is expected COP range for an air cooled heat pump or a/c unit.
Answer: You could dissolve it by heating it back up, then just cooling it down again.
Hope that helps!
Covalent bonds. Silicon, carbon, germanium, and a few other elements form covalently bonded solids. In these elements there are four electrons in the outer sp-shell, which is half filled. ... In the covalent bond an atom shares one valence (outer-shell) electron with each of its four nearest neighbour atoms.