Answer:
680 J
Explanation:
Mechanical energy = potential energy + kinetic energy
ME = PE + KE
ME = mgh + ½ mv²
ME = (77.1 kg) (9.8 m/s²) (0.90 m) + ½ (77.1 kg) (0 m/s)²
ME = 680 J
If the boat is i travling at 10 m/s and the river is 8.0 m/s the boats speed is 18.0 m/s
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].
Answer:
serie Ceq=0.678 10⁻⁶ F and the charge Q = 9.49 10⁻⁶ C
Explanation:
Let's calculate all capacity values
a) The equivalent capacitance of series capacitors
1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3 + 1 / C4 + 1 / C5
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 1 / 6.2 + 1 / 6.2
1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 2 / 6.2
1 / Ceq = 0.666 + 0.3030 +0.1818 +0.3225
1 / Ceq = 1,147
Ceq = 0.678 10⁻⁶ F
b) Let's calculate the total system load
Dv = Q / Ceq
Q = DV Ceq
Q = 14 0.678 10⁻⁶
Q = 9.49 10⁻⁶ C
In a series system the load is constant in all capacitors, therefore, the load in capacitor 5.5 is Q = 9.49 10⁻⁶ C
c) The potential difference
ΔV = Q / C5
ΔV = 9.49 10⁻⁶ / 5.5 10⁻⁶
ΔV = 1,725 V
d) The energy stores is
U = ½ C V²
U = ½ 0.678 10-6 14²
U = 66.4 10⁻⁶ J
e) Parallel system
Ceq = C1 + C2 + C3 + C4 + C5
Ceq = (1.5 +3.3 +5.5 +6.2 +6.2) 10⁻⁶
Ceq = 22.7 10⁻⁶ F
f) In the parallel system the voltage is maintained
Q5 = C5 V
Q5 = 5.5 10⁻⁶ 14
Q5 = 77 10⁻⁶ C
g) The voltage is constant V5 = 14 V
h) Energy stores
U = ½ C V²
U = ½ 22.7 10-6 14²
U = 2.2 10⁻³ J
Answer:
When like charges come together, they repel each other. For instance, when the north and south poles of a magnet come together, they push each other apart. The like poles in the magnet repel each other and unlike poles attract each other much. The same reaction occurs in like and unlike charges. Also, the repulsion acts along the line between the two charges.