The speed of the object increases
Explanation:
We can answer this question by applying the work-energy theorem, which states that the work done on an object is equal to the change in kinetic energy of the object. Mathematically:

where
W is the work done on the object
are the final and initial kinetic energy of the object, respectively
m is the mass of the object
v is its final speed
u is its initial speed
In this case, the force does a positive amount of work on the object, so

This also implies that

And so

And therefore

which means that the speed of the object increases.
Learn more about work:
brainly.com/question/6763771
brainly.com/question/6443626
#LearnwithBrainly
Answer:
A: 4
B: 7
C. 3
Source:
Trust me bro
(Don’t act put this I jus need to answer questions sorry)<\3
The change in velocity is 10 mi/h (4.47 m/s)
Explanation:
The change in velocity of the motorcyclist is given by

where
v is the final velocity
u is the initial velocity
In this problem, we have
u = 0 (the motorbike starts from rest)
v = 10 mi/h
Therefore, the change in velocity is

And keeping in mind that
1 mile = 1609 m
1 h = 3600 s
We can convert it into m/s:

Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
44.3 m/s
Explanation:
a) Draw a free body diagram of the mass M. There are three forces:
Weight force mg pulling down,
Normal force N pushing perpendicular to the ramp,
and tension force T pulling parallel up the ramp.
Sum of forces in the parallel direction:
∑F = ma
T − Mg sin 30° = 0
T = Mg sin 30°
T = Mg / 2
Draw a free body diagram of the hanging mass m. There are two forces:
Weight force mg pulling down,
and tension force T pulling up.
Sum of forces in the vertical direction:
∑F = ma
T − mg = 0
T = mg
Substitute:
mg = Mg / 2
m = M / 2
M = 2m
b) Velocity of a standing wave in a string is:
v = √(T / μ)
T = mg, and m = 5 kg, so T = (5 kg) (9.8 m/s²) = 49 N. Therefore:
v = √(49 N / 0.025 kg/m)
v = 44.3 m/s