Brand A costs $2 per ounce, B is $1, C is $0.50(?) I think
Answer:
Dh/dt = 0.082 ft/min
Step-by-step explanation:
As a perpendicular cross section of the trough is in the shape of an isosceles triangle the trough has a circular cone shape wit base of 1 feet and height h = 2 feet.
The volume of a circular cone is:
V(c) = 1/3 * π*r²*h
Then differentiating on both sides of the equation we get:
DV(c)/dt = 1/3* π*r² * Dh/dt (1)
We know that DV(c) / dt is 1 ft³ / 5 min or 1/5 ft³/min
and we are were asked how fast is the water rising when the water is 1/2 foot deep. We need to know what is the value of r at that moment
By proportion we know
r/h ( at the top of the cone 0,5/ 2) is equal to r/0.5 when water is 1/2 foot deep
Then r/h = 0,5/2 = r/0.5
r = (0,5)*( 0.5) / 2 ⇒ r = 0,125 ft
Then in equation (1) we got
(1/5) / 1/3* π*r² = Dh/dt
Dh/dt = 1/ 5*0.01635
Dh/dt = 0.082 ft/min
The first answer is 80, and the second answer is still 65.5. Hope this helps!
p is 9
<u>Step-by-step explanation:</u>
Step 1:
Given 77 = 8p + 5. Find p
⇒ 8p + 5 = 77
⇒ 8p = 72
⇒ p = 72/8 = 9
Answer: 2
Step-by-step explanation: