The area of the convex polygon is 43/2 square units
<h3>How to determine the area of the convex polygon?</h3>
The vertices are given as:
(0,5), (-1,2), (4,4), (-3,-4) and (2,0)
The area is then calculated as:
![A = \frac 12(\left[\begin{array}{cc}x_1&x_2\\y_1&y_2\end{array}\right] + \left[\begin{array}{cc}x_2&x_3\\y_2&y_3\end{array}\right] + ....+\left[\begin{array}{cc}x_n&x\\y_n&y\end{array}\right] )](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%2012%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_1%26x_2%5C%5Cy_1%26y_2%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_2%26x_3%5C%5Cy_2%26y_3%5Cend%7Barray%7D%5Cright%5D%20%2B%20....%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_n%26x%5C%5Cy_n%26y%5Cend%7Barray%7D%5Cright%5D%20%29)
So, we have:

Evaluate

Remove the absolute bracket

This gives

Hence, the area of the convex polygon is 43/2 square units
Read more about convex polygon at:
brainly.com/question/14522707
#SPJ1
Sample space of S{A, B, C, F, G, M, T, Z}, subset A{A, G, M}, subset B{A, B, F, G, T, Z). Determine AUB.
faltersainse [42]
AUB means combination of elements in A and B without writing one element twice
AUB={A,B,F,G,M,T,Z}
Answer:
A
Step-by-step explanation:
note that (f - g)(x) = f(x) - g(x)
f(x) - g(x)
= 3x - 2 - (2x + 1) ← distribute by - 1
= 3x - 2 - 2x - 1 ← collect like terms
= x - 3 → A
Where’s the rest of the question?
The area including cutout is 15*8=120
the area of cutout is 5*5=25
120-25=95 cm²