1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ostrovityanka [42]
3 years ago
15

A number cube is rolled 63 times. predict how many times the cube will land on a number that is a factor of 6 .

Mathematics
1 answer:
maria [59]3 years ago
4 0
You said cube, so I assume a standard 6 sided die with numbers 1,2,3,4,5,6

how many times you said
we need to find how many fulfill the condition

how many numbers from 1,2,3,4,5,6 are a factor of 6?
1 is a factor
2 is a factor
3 is a factor
6 is a factor

so 4 numbers
there are 6 sides, so we would expect it to land of a factor of 6 a grand total of 4/6 or 2/3 times

so 2/3 of the time we will get a factor of 6

so find 2/3 of 63 to get number of times we get a factor of 6
2/3 of 63=2/3 times 63=42
so it will land about 42 times
You might be interested in
Dwayne buys a pumpkin that weighs 12.65 pounds.To the nearest tenth of a pound,how much dose the pumpkin weigh?
seropon [69]
12.60 is the answer.
4 0
3 years ago
Read 2 more answers
Keiko is mixing 4 cups of concrete to make a stepping stone. She needs 1.5 cups of sand and 2.5 cups of cement mix. Which statem
Charra [1.4K]
Ur answer would be B.. Hope it helps let me know if its right or not!
8 0
3 years ago
1. Approximate the given quantity using a Taylor polynomial with n3.
Jet001 [13]

Answer:

See the explanation for the answer.

Step-by-step explanation:

Given function:

f(x) = x^{1/4}

The n-th order Taylor polynomial for function f with its center at a is:

p_{n}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(n)}a}{n!} (x-a)^{n}

As n = 3  So,

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{3!} (x-a)^{3}

p_{3}(x) = f(a) + f'(a) (x-a)+\frac{f''(a)}{2!} (x-a)^{2} +...+\frac{f^{(3)}a}{6} (x-a)^{3}

p_{3}(x) = a^{1/4} + \frac{1}{4a^{ 3/4} }  (x-a)+ (\frac{1}{2})(-\frac{3}{16a^{7/4} } ) (x-a)^{2} +  (\frac{1}{6})(\frac{21}{64a^{11/4} } ) (x-a)^{3}

p_{3}(x) = 81^{1/4} + \frac{1}{4(81)^{ 3/4} }  (x-81)+ (\frac{1}{2})(-\frac{3}{16(81)^{7/4} } ) (x-81)^{2} +  (\frac{1}{6})(\frac{21}{64(81)^{11/4} } ) (x-81)^{3}

p_{3} (x) = 3 + 0.0092592593 (x - 81) + 1/2 ( - 0.000085733882) (x - 81)² + 1/6  

                                                                                  (0.0000018522752) (x-81)³

p_{3} (x)  =  0.0092592593 x - 0.000042866941 (x - 81)² + 0.00000030871254

                                                                                                       (x-81)³ + 2.25

Hence approximation at given quantity i.e.

x = 94

Putting x = 94

p_{3} (94)  =  0.0092592593 (94) - 0.000042866941 (94 - 81)² +          

                                                                 0.00000030871254 (94-81)³ + 2.25

         = 0.87037 03742 - 0.000042866941 (13)² + 0.00000030871254(13)³ +    

                                                                                                                       2.25

         = 0.87037 03742 - 0.000042866941 (169) +  

                                                                      0.00000030871254(2197) + 2.25

         = 0.87037 03742 - 0.007244513029 + 0.0006782414503 + 2.25

p_{3} (94)  = 3.113804102621

Compute the absolute error in the approximation assuming the exact value is given by a calculator.

Compute \sqrt[4]{94} as 94^{1/4} using calculator

Exact value:

E_{a}(94) = 3.113737258478

Compute absolute error:

Err = | 3.113804102621 - 3.113737258478 |

Err (94)  = 0.000066844143

If you round off the values then you get error as:

|3.11380 - 3.113737| = 0.000063

Err (94)  = 0.000063

If you round off the values up to 4 decimal places then you get error as:

|3.1138 - 3.1137| = 0.0001

Err (94)  = 0.0001

4 0
4 years ago
At the henning poultry farm, 56 of he 280 chickens being raised are Leghorn chickens. What is the ratio of the number of Leghorn
Virty [35]
1:5 56/280 is .2 which can be converted to 1/5 which is the same in ratio form.
6 0
4 years ago
Read 2 more answers
Find dy du , du dx , and dy dx .
dangina [55]

Answer:

a) \frac{dy}{du}=5(x^2 +1)^4, \frac{du}{dx}=2x, \frac{dy}{dx}=10x(x^2+1)^4  

b) \frac{dy}{du}=4(4x^2-x+6)^3, \frac{du}{dx}=8x-1, \frac{dy}{dx}=4(8x-1)(4x^2-2+6)^3  

Step-by-step explanation:

We can use the chain rule in the following form: is u=u(x) is a differentiable function depending on x and y=y(u) is a differentiable function depending on u, then \frac{dy}{dx}=\frac{dy}{du} \frac{du}{dx}.

a) \frac{dy}{du}=\frac{d}{du} (u^5)=5u^4=5(x^2 +1)^4 from the power rule.  

\frac{du}{dx}=\frac{d}{dx} (x^2 +1)=2x.

From the previous parts and the chain rule, \frac{dy}{dx}=\frac{dy}{du} \frac{du}{dx}=5(x^2 +1)^4(2x)=10x(x^2+1)^4  

b) \frac{dy}{du}=\frac{d}{du} (u^4)=4u^3=4(4x^2-x+6)^3  

\frac{du}{dx}=\frac{d}{dx} (4x^2-x+6)=8x-1 from the power and sum rules.

Then, \frac{dy}{dx}=\frac{dy}{du} \frac{du}{dx}=4(4x^2 -x+6)^3(8x-1)=4(8x-1)(4x^2-x+6)^3  

8 0
4 years ago
Other questions:
  • What are the roots of the quadratic equation below 2x ^ 2 - 12x + 13=0 PLEASE HELP
    10·1 answer
  • Number sense $250/10
    9·2 answers
  • The answer and the graph :)
    8·1 answer
  • Two identical blue boxes together weigh the same as three identical red boxes together. Each red box weighs 15.2 ounces. How muc
    9·2 answers
  • Find g(x) if it is known that g(2t)=8t−1.
    14·1 answer
  • Can someone please answer letter F ? It applies to the question 4 and the graph on the right , it’s not long .
    9·1 answer
  • A local television station for a city with a population of 500,000 recently conducted a poll where they invited viewers to call
    14·1 answer
  • What is the probability that in a sample of 400 registered voters to at least 290 voted in their most recent local
    10·1 answer
  • A study of traffic violations on a busy highway finds that the number of tickets for speeding written by officers tends to decre
    9·1 answer
  • 3/2(4x – 1) – 3x = 5/4 – (x + 2)
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!