Answer:
B
Explanation:
because kinetic energy is directly proportional to temperature so the hottor the object, the more kinetic energy.
Answer:
a) 17.33 V/m
b) 6308 m/s
Explanation:
We start by using equation of motion
s = ut + 1/2at², where
s = 1.2 cm = 0.012 m
u = 0 m/s
t = 3.8*10^-6 s, so that
0.012 = 0 * 3.8*10^-6 + 0.5 * a * (3.8*10^-6)²
0.012 = 0.5 * a * 1.444*10^-11
a = 0.012 / 7.22*10^-12
a = 1.66*10^9 m/s²
If we assume the electric field to be E, and we know that F =qE. Also, from Newton's law, we have F = ma. So that, ma = qE, and E = ma/q, where
E = electric field
m = mass of proton
a = acceleration
q = charge of proton
E = (1.67*10^-27 * 1.66*10^9) / 1.6*10^-19
E = 2.77*10^-18 / 1.6*10^-19
E = 17.33 V/m
Final speed of the proton can be gotten by using
v = u + at
v = 0 + 1.66*10^9 * 3.8*10^-6
v = 6308 m/s
Acceleration = velocity / time.
Answer:
<h2> 4kg</h2>
Explanation:
Step one:
given
length of rod=2m
mass of object 1 m1=1kg
let the unknown mass be x
center of mass<em> c.m</em>= 1.6m
hence 1kg is 1.6m from the <em>c.m</em>
and x is 0.4m from the <em>c.m</em>
Taking moment about the <em>c.m</em>
<em>clockwise moment equals anticlockwise moments</em>
1*1.6=x*0.4
1.6=0.4x
divide both sides by 0.4 we have
x=1.6/0.4
x=4kg
The mass of the other object is 4kg