Answer:
1/2 Hz
Explanation:
A simple harmonic motion has an equation in the form of

where A is the amplitude,
is the angular frequency and
is the initial phase.
Since our body has an equation of x = 5cos(π t + π/3) we can equate
and solve for frequency f

f = 1/2 Hz
Answer:
Explanation:
a) Power consumption is 4100 J/min / 60 s/min = 68.3 W(atts)
work done raised the potential energy
b) 75(9.8)(1000) / (3(3600)) = 68.055555... 68.1 W
c) efficiency is 68.1 / 68.3 = 0.99593... or nearly 100%
Not a very likely scenario.
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt
Answer:
0.166 rad/s
Explanation:
See attachment for calculations
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.