Answer: A
Explanation:
Molecules speed up as heat is added
For example when water is heated as the water gets hotter the molecules speed up causing the water to boil and change phases into a gas (this is called evaporation)
In an ice cube the water molecules are frozen (barely moving compressed tight together) as the ice cube heats up the molecules start speeding up and moving further apart as the ice cube turns into liquid form. So as heat is added molecules speed up, move faster and spread further apart
Answer:
A(3.56m)
Explanation:
We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.
We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.
Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2
Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2= v^2).
Ef= -mgh+3/4mv^2
Since Ef=Ei=0
Mgh=3/4mv^2
gh=3/4v^2
h=0.75v^2/g
plug in givens to get h= 3.57m
The electric potential energy of the pair of charges when the second charge is at point b is 7.3 x 10⁻⁸ J.
<h3>
Electric potential energy</h3>
When work is done on a positive test charge to move it from one location to another, potential energy increases and electric potential increases.
The electric potential energy between the charges when the second charge is at point b is calculated as follows;
ΔU = -w
Ui - Uf = w
Uf = Ui - w
where;
Uf is the final potential energy
Ui is the initial potential energy
w is the work done by the force
Uf = 5.4 x 10⁻⁸ J - (-1.9 x 10⁻⁸J)
Uf = 5.4 x 10⁻⁸ J + 1.9 x 10⁻⁸ J
Uf = 7.3 x 10⁻⁸ J
Thus, the electric potential energy of the pair of charges when the second charge is at point b is 7.3 x 10⁻⁸ J.
Learn more about electric potential energy here: brainly.com/question/14306881
#SPJ1
Answer:
The coefficient of static friction between the car and the track
u=0.572
Explanation:
We don't know the mass of the car or any other information so the acceleration is the reason to solve the friction coefficient
∑
As we know

Also the center ward direction forces



But now vt relation with the tangential acceleration

replacing


So magnitude of the force can get by

Get the factor to simplify


Solve to u'

