Answer:

Explanation:
Given data
Current I=82µA=82×10⁻⁶A
Resistance R=2.4×10⁵Ω
to find
Voltage
Solution
From Ohms law we know that:

Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.
42.6 is the answer I believe because you would do 2,560 divided by 60 if I'm correct.
Answer:
20 ms¯¹
Explanation:
3. Determination of the final velocity
From the question given above, the following data were obtained:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
Acceleration is simply defined as the change in velocity per unit time.
Mathematically, it can be expressed as:
Acceleration (a) = final velocity – Initial velocity / time
a = v – u / t
With the above formula, we can obtain the final velocity of the car as follow:
Time (t) = 4 s
Acceleration (a) = 5 ms¯²
Initial velocity (u) = 0 ms¯¹
Final velocity (v) =?
a = v – u / t
5 = v – 0 / 4
5 = v / 4
Cross multiply
v = 5 × 4
v = 20 ms¯¹
Thus, the final velocity of the car is 20 ms¯¹