The function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
<h3>How to determine the characteristics of rigid transformations by comparing two functions</h3>
In this problem we have two functions related to each other because of the existence of <em>rigid</em> transformations. <em>Rigid</em> transformations are transformations applied to <em>geometric</em> loci such that <em>Euclidean</em> distance is conserved at every point of the <em>geometric</em> locus.
Let be f(x) = - 2 · cos (x - 1) + 3, then we use the concept of <em>horizontal</em> translation 4 units in the + x direction:
f'(x) = - 2 · cos (x - 1 + 4) + 3
f'(x) = - 2 · cos (x + 3) + 3 (1)
Now we apply a reflection over the x-axis:
g(x) = - [- 2 · cos (x + 3) + 3]
g(x) = 2 · cos (x + 3) - 3
Therefore, the function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
To learn more on rigid transformations: brainly.com/question/1761538
#SPJ1
Definition:
A function is "even" when f(x) = f(−x) for all x.
Geometrically speaking, the graph face of an even function is symmetric with respect to the y-axis, meaning that its graph remains unchanged after reflection about the y-axis.
If point (6, 8) is one the points on the graph of f(x), then f(6)=8 and since function is even, you can state that f(-6)=f(6)=8. This means that point (-6,8) must also be a point on the graph. Geometrically it means that the output of a negative x-value and its opposite is the same.
Answer: correct choice is A.
1/2 divide by 3 or 1/[2(3)] which will be equal to 1/6
Answer:
System A has 4 real solutions.
System B has 0 real solutions.
System C has 2 real solutions
Step-by-step explanation:
System A:
x^2 + y^2 = 17 eq(1)
y = -1/2x eq(2)
Putting value of y in eq(1)
x^2 +(-1/2x)^2 = 17
x^2 + 1/4x^2 = 17
5x^2/4 -17 =0
Using quadratic formula:

a = 5/4, b =0 and c = -17

Finding value of y:
y = -1/2x


System A has 4 real solutions.
System B
y = x^2 -7x + 10 eq(1)
y = -6x + 5 eq(2)
Putting value of y of eq(2) in eq(1)
-6x + 5 = x^2 -7x + 10
=> x^2 -7x +6x +10 -5 = 0
x^2 -x +5 = 0
Using quadratic formula:

a= 1, b =-1 and c =5

Finding value of y:
y = -6x + 5
y = -6(\frac{1\pm\sqrt{19}i}{2})+5
Since terms containing i are complex numbers, so System B has no real solutions.
System B has 0 real solutions.
System C
y = -2x^2 + 9 eq(1)
8x - y = -17 eq(2)
Putting value of y in eq(2)
8x - (-2x^2+9) = -17
8x +2x^2-9 +17 = 0
2x^2 + 8x + 8 = 0
2x^2 +4x + 4x + 8 = 0
2x (x+2) +4 (x+2) = 0
(x+2)(2x+4) =0
x+2 = 0 and 2x + 4 =0
x = -2 and 2x = -4
x =-2 and x = -2
So, x = -2
Now, finding value of y:
8x - y = -17
8(-2) - y = -17
-16 -y = -17
-y = -17 + 16
-y = -1
y = 1
So, x= -2 and y = 1
System C has 2 real solutions