A covalent bond is your answer
Answer:
1335.12 mL of H2O
Explanation:
To calculate the mililiters of water that the solution needs, it is necessary to know that the volume of the solution is equal to the volume of the solute (NaOH) plus the volume of the solvent (H2O).
From the molarity formula we can first calculate the volume of the solution:


The volume of the solution as we said previously is:
Solution volume = solute volume + solvent volume
To determine the volume of the solute we first obtain the grams of NaOH through the molecular weight formula:


Now with the density of NaOH the milliliters of solute can be determined:


Having the volume of the solution and the volume of the solute, the volume of the solvent H2O can be calculated:
Solvent volume = solution volume - solute volume
Solvent volume = 1429 mL - 93.88 mL = 1335.12 mL of H2O
Answer:
Their average kinetic energy increases
Explanation:
The average kinetic energy of the rice molecules increases as the pot is left on the cooking stove.
Heat is transferred to the pot by conduction from the heat source. The heat is then transferred to the rice in the cooking pot by convection.
- As the water in the pot heats up.
- The rice gains thermal energy.
- This causes the molecules of the rice particles to start vibrating.
- As the molecules vibrate about their fixed position, their thermal energy continues to increase.
- Therefore, the amount of heat absorbed by the rice increases with time and this actually cooks the food.
Earth’s Atmosphere
The atmosphere of Earth is the layer of gases, commonly known as air, retained by Earth's gravity, surrounding the planet Earth and forming its planetary atmosphere.
Answer:
A is the molecular formula for xylose because shows the actual number of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the molecular formula for xylose because shows the arrangement of atoms in the compound: Formula B is the structurab formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the empirical formula for xylose because it shows the actual number of atoms in the compound: Formula B is the molecular formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound: Formula A is the structural formula for xylose because it shows the arrangement of atoms in the compound: Formula B is the empirical formula for xylose because it shows the smallest whole-number ratio for the different atoms in the compound.