- I think it's possibly this "The figure must be a square because the diagonals of a square bisect the right angles." but there's also "The figure must be a rhombus because it has exactly 2 pairs of congruent angles." buuut since the first one seems more better i'm assuming then that's probably the right answer.
There is a multiple zero at 0 (which means that it touches there), and there are single zeros at -2 and 2 (which means that they cross). There is also 2 imaginary zeros at i and -i.
You can find this by factoring. Start by pulling out the greatest common factor, which in this case is -x^2.
-x^6 + 3x^4 + 4x^2
-x^2(x^4 - 3x^2 - 4)
Now we can factor the inside of the parenthesis. You do this by finding factors of the last number that add up to the middle number.
-x^2(x^4 - 3x^2 - 4)
-x^2(x^2 - 4)(x^2 + 1)
Now we can use the factors of two perfect squares rule to factor the middle parenthesis.
-x^2(x^2 - 4)(x^2 + 1)
-x^2(x - 2)(x + 2)(x^2 + 1)
We would also want to split the term in the front.
-x^2(x - 2)(x + 2)(x^2 + 1)
(x)(-x)(x - 2)(x + 2)(x^2 + 1)
Now we would set each portion equal to 0 and solve.
First root
x = 0 ---> no work needed
Second root
-x = 0 ---> divide by -1
x = 0
Third root
x - 2 = 0
x = 2
Forth root
x + 2 = 0
x = -2
Fifth and Sixth roots
x^2 + 1 = 0
x^2 = -1
x = +/- 
x = +/- i
-8 = -7x-1
bring -1 to the other side as we are isolating for x so it will be
-7 = -7x then divide -7 from each side
-7/-7 = (-7/-7)x
1 = x
Answer is f(1)= -8
Answer:
3π square units.
Step-by-step explanation:
We can use the disk method.
Since we are revolving around AB, we have a vertical axis of revolution.
So, our representative rectangle will be horizontal.
R₁ is bounded by y = 9x.
So, x = y/9.
Our radius since our axis is AB will be 1 - x or 1 - y/9.
And we are integrating from y = 0 to y = 9.
By the disk method (for a vertical axis of revolution):
![\displaystyle V=\pi \int_a^b [R(y)]^2\, dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%20%5Cint_a%5Eb%20%5BR%28y%29%5D%5E2%5C%2C%20dy)
So:

Simplify:

Integrate:
![\displaystyle V=\pi\Big[y-\frac{1}{9}y^2+\frac{1}{243}y^3\Big|_0^9\Big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5CBig%5By-%5Cfrac%7B1%7D%7B9%7Dy%5E2%2B%5Cfrac%7B1%7D%7B243%7Dy%5E3%5CBig%7C_0%5E9%5CBig%5D)
Evaluate (I ignored the 0):
![\displaystyle V=\pi[9-\frac{1}{9}(9)^2+\frac{1}{243}(9^3)]=3\pi](https://tex.z-dn.net/?f=%5Cdisplaystyle%20V%3D%5Cpi%5B9-%5Cfrac%7B1%7D%7B9%7D%289%29%5E2%2B%5Cfrac%7B1%7D%7B243%7D%289%5E3%29%5D%3D3%5Cpi)
The volume of the solid is 3π square units.
Note:
You can do this without calculus. Notice that R₁ revolved around AB is simply a right cone with radius 1 and height 9. Then by the volume for a cone formula:

We acquire the exact same answer.
The value of the expression 8 / m - 11 / 3m is 13 / 3m
<h3 /><h3>How to simplify an expression?</h3>
8 / m - 11 / 3m
Therefore,
8 / m - 11 / 3m
The factor of the denominator is 3m
Therefore,
8 / m - 11 / 3m = 3(8) - 11/ 3m
3(8) - 11/ 3m = 24 - 11 / 3m
24 - 11 / 3m = 13 / 3m
learn more on fraction here: brainly.com/question/24161414
#SPJ1