1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
14

A baby carriage is sitting at the top of a hill that is 21 m high The carriage with the baby weighs 12 N

Physics
1 answer:
WITCHER [35]3 years ago
5 0

Answer:E

=

252

J

Explanation:

The total mechanical energy of an object or system is given by:

E

m

e

c

h

=

K

+

U

Where

K

is the kinetic energy of the object and

U

is the potential energy of the object. The carriage, sitting motionless at the top of the hill, has only potential energy in the form of gravitational potential energy.

Gravitational potential energy is given by:

U

g

=

m

g

h

Where

m

is the mass of the object,

g

is the gravitational acceleration constant, and

h

is the height of the object above some specific reference point, in this case the ground

21

m

below.

The weight of a stationary object at the surface of the earth is equal to the force of gravity acting on the object.

W

=

→

F

g

=

m

g

We are given that the carriage weighs

12

N

, therefore

m

g

=

12

N

.

U

g

=

12

N

⋅

21

m

⇒

U

g

=

252

N

m

=

252

J

Answer link

Explanation:

You might be interested in
Two identical conducting spheres, A and B, carry equal charge. They are stationary and are separated by a distance much larger t
podryga [215]

Answer:

8F_i = 3F_f

Explanation:

When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.

Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.

Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.

The electrostatic force, Fi, in the initial configuration can be calculated as follows.

F_i = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{Q^2}{r^2}[/tex}The electrostatic force, Ff, in the final configuration is [tex]F_f = \frac{1}{4\pi\epsilon_0}\frac{q_Aq_B}{r^2} = \frac{1}{4\pi\epsilon_0}\frac{3Q^2/8}{r^2}[/tex}Therefore, the relation between Fi and Ff is as follows[tex]F_i = F_f\frac{3}{8}\\8F_i = 3F_f

7 0
3 years ago
A hypodermic needle consists of a plunger of circular cross-section that slides inside a hollow cylindrical syringe. when the pl
Blababa [14]
The fluid that is being passed through the syringe and needle is incompressible, which means that it will transmit pressure equally. Therefore, the pressure on the plunger will be equivalent to the pressure on the needle. We also know that:

Pressure = Force / Area

Pressure on plunger = 4 / (π*(0.012/2)²)
Pressure on plunger = 35.4 kPa
Pressure on needle = 35.4 kPa

35.4 kPa = F / (4 / (π*(0.0025/2)²)
F = 0.17 N

The force on the needle is 0.17 N
4 0
3 years ago
An electric dipole consisting of charges of magnitude 1.70 nC separated by 6.80 μm is in an electric field of strength 1160 N/C.
bazaltina [42]

Answer:

p = 1.16 10⁻¹⁴ C m     and  ΔU = 2.7 10 -11 J

Explanation:

The dipole moment of a dipole is the product of charges by distance

                        p = 2 a q

With 2a the distance between the charges and the magnitude of the charges

                        p = 1.7 10⁻⁹ 6.8 10⁻⁶

                        p = 1.16 10⁻¹⁴ C m

 

The potential energie dipole  is described by the expression

                       U = - p E cos θ

Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line

Orientation parallel to the field

                      θ = 0º

                      U = 1.16 10⁻¹⁴ 1160 cos 0

                      U1 = 1.35 10⁻¹¹ J

Antiparallel orientation

                       θ = 180º

                      cos 180 = -1

                      U2 = -1.35 10⁻¹¹ J

The difference in energy between these two configurations is the subtraction of the energies

                         ΔU = | U1 -U2 |

                         ΔU = 1.35 10-11 - (-1.35 10-11)

                         ΔU = 2.7 10 -11 J

6 0
3 years ago
The escape velocity is defined to be the minimum speed with which an object of mass m must move to escape from the gravitational
s344n2d4d5 [400]

Answer:

v = √2G M_{earth} / R

Explanation:

For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)

        Eo = K + U = ½ m1 v² - G m1 m2 / r1

        Ef = - G m1 m2 / r2

When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf

       Eo = Ef

       ½ m1v² - G m1 M_{earth} / R = - G m1 M_{earth} / R

      v² = 2G M_{earth} (1 / R - 1 / Rinf)

If we do Rinf = infinity     1 / Rinf = 0

       v = √2G M_{earth} / R

      Ef = = - G m1 m2 / R

The mechanical energy is conserved  

 

      Em = -G m1  M_{earth} / R

      Em = - G m1  M_{earth} / R

     R = int        ⇒  Em = 0

6 0
2 years ago
A person walks due south from point A for 500 yards and then due west for 300 yards, arriving at point B. Answer the following q
Pepsi [2]

The total displacement of the person walking from point A to point B is 300 yards.

As shown in the figure we can conclude that the required method to calculate the total displacement is the Pythagoras theorem.

<h3>Pythagoras theorem in brief :</h3>

According to the Pythagorean Theorem, the square that represents the hypotenuse, or side of a right triangle that faces the right angle, is equal to the total of the squares on the triangle's legs.(or, in popular algebraic notation, a^2 + b^2 = c^2).

<h3>Calculation: </h3>

Let,

a = 500

b=  300

Hence by using Pythagoras' theorem

Total displacement of the person = \sqrt{500^{2}  + 300^{2} } = \sqrt{900000} = 300

Thus the total displacement of the person from starting point is 300 yards.

Learn more about the displacement examples here:

brainly.com/question/11188852

#SPJ4

5 0
2 years ago
Other questions:
  • Unpolarized light with intensity I0I0I_0 is incident on an ideal polarizing filter. The emerging light strikes a second ideal po
    10·1 answer
  • What is the significance of the discovery of exoplanets?
    12·2 answers
  • Find the kinetic energy of a 0.1-kilogram toy truck moving at the speed of 1.1 meters per second.
    14·1 answer
  • I have this question where I think the answer is "directed north of east," but apparently it is not. Can someone explain: vector
    8·1 answer
  • If two brown-eyed people have a blue-eyed child, we can deduce which of the following?
    15·2 answers
  • What does it mean to say that scientific models are open to change?
    13·2 answers
  • What does pe really mean
    9·2 answers
  • Resistances is inversely proprtional to___of the conductor​
    15·2 answers
  • Bromine vapour is heavier than air. even so it's spreads upwards in the experiment above. Why?
    15·1 answer
  • Atomic numbers for atoms _____ in increments of _____ as you move across the periodic table of elements
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!