1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexdok [17]
2 years ago
11

What is the electric field 3.3 m from the center of the terminal of a Van de Graaff with a 7.20 mC charge, noting that the field

is equivalent to that of a point charge at the center of the terminal?
Physics
1 answer:
Snowcat [4.5K]2 years ago
6 0

Answer:

Electric Field is 5.943801*10^6 N/C

Explanation:

Electric Field:

It originates from positive charge and ends at negative charge.

General Formula for electric Field:

E=\frac{kq}{r^2}

where:

k is the Coulomb Constant

q is the charge

r is the distance

Given:

q=7.20 mC

r=3.3 meters

k=8.99*10^9 N.m^2/C^2

Find:

Electric Field=?

Solution:

E=\frac{kq}{r^2}

E=\frac{(8.99*10^9)(7.20*10^{-3})}{3.3^2}\\E=5943801.653 N/C\\E=5.943801653*10^6 N/C

Electric Field is 5.943801*10^6 N/C

You might be interested in
Net force needed to accelerate a 1000-kg car at 0.5g
just olya [345]
It would be 2000N ( newtons )
6 0
3 years ago
A ski lift carries people along a 220-meter cable up the side of a mountain. Riders are lifted a total of 110 meters in elevatio
jeka94

The ideal mechanical advantage (IMA) can be determined by the following equation:

 IMA= Input distance/Output distance

 The Input distance and Output distance are:

 Input distance=220 meters

 Output distance=110 meters

 When you substitute in the equation of the ideal mechanical advantage (IMA), you obtain:

 IMA= Input distance/Output distance

 IMA= 220 meters/110 meters

 IMA=2

3 0
3 years ago
A small ball of mass 2.00 kilograms is moving at a velocity 1.50 meters/second. It hits a larger, stationary ball of mass 5.00 k
rewona [7]

The kinetic energy of the small ball before the collision is

                             KE  =  (1/2) (mass) (speed)²

                                     = (1/2) (2 kg) (1.5 m/s)

                                     =    (1 kg)  (2.25 m²/s²)

                                     =        2.25 joules.

Now is a good time to review the Law of Conservation of Energy:

                     Energy is never created or destroyed. 
                     If it seems that some energy disappeared,
                     it actually had to go somewhere.
                     And if it seems like some energy magically appeared,
                     it actually had to come from somewhere.

The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision.  The large ball
and the small ball will just have to share the same 2.25 joules.

3 0
3 years ago
Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
aliya0001 [1]

Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.

Explanation:

  • Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
  • Let S_{0} be the speed of the river's current given as 1.00 m/s.

  • Note that this speed is the magnitude of the velocity which is a vector quantity.
  • The direction of the swimmer is upstream.

Hence the resultant velocity is given as, S_{R} = S — S 0S_{0}

S_{R} = 1.25 — 1

S_{R} = 0.25 m/s.

Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.

6 0
3 years ago
g A ball thrown straight up into the air is found to be moving at 7.94 m/s after falling 2.72 m below its release point. Find th
kati45 [8]

The ball has height <em>y</em> and velocity <em>v</em> at time <em>t</em> according to

<em>y</em> = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

and

<em>v</em> = <em>v</em>₀ - <em>g t</em>

where <em>v</em>₀ is its initial speed and <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity.

The ball is falling with a velocity of 7.94 m/s when it's 2.72 m below the release point, which at time <em>t </em>such that

-2.72 m = <em>v</em>₀ <em>t</em> - 1/2 <em>g</em> <em>t</em> ²

-7.94 m/s = <em>v</em>₀ - <em>g t</em>

Solve for <em>t</em> in the second equation:

<em>t </em>= (<em>v</em>₀ + 7.94 m/s)/<em>g</em>

Substitute this into the first equation and solve for <em>v</em>₀ :

-2.72 m = <em>v</em>₀ (<em>v</em>₀ + 7.94 m/s) /<em>g</em> - 1/2 <em>g</em> ((<em>v</em>₀ + 7.94 m/s)/<em>g</em>)²

-2.72 m = <em>v</em>₀²/<em>g</em> + (7.94 m/s) <em>v</em>₀/<em>g</em> - 1/2 (<em>v</em>₀ + 7.94 m/s)²/<em>g</em>

2 (-2.72 m) <em>g</em> = 2<em>v</em>₀² + 2 (7.94 m/s) <em>v</em>₀ - (<em>v</em>₀ + 7.94 m/s)²

2 (-2.72 m) (9.80 m/s²) = 2<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ - (<em>v</em>₀² + (15.9 m/s) <em>v</em>₀ + 63.0 m²/s²)

-53.3 m²/s² = <em>v</em>₀² - 63.0 m²/s²

<em>v</em>₀² = 9.73 m²/s²

<em>v</em>₀ = 3.12 m/s

3 0
2 years ago
Other questions:
  • Which composition of water moves to begin a deepwater current?
    11·1 answer
  • If the magma chamber beneath volcano b empties and then collapses, what kind of feature will form? explain.
    13·2 answers
  • Earth is the only planet able to support _____.
    8·1 answer
  • What causes an electric current in a wire?
    5·2 answers
  • The period T of a simple pendulum depends on the length L of the pendulum and the acceleration of gravity g (dimensions L/P). (a
    10·1 answer
  • Here is it u can see it​
    8·1 answer
  • 4. How long does it take a car traveling at 45 km/h to travel 100.0 m?<br> 4500m
    7·1 answer
  • What are the three major tendons in the knee?
    10·2 answers
  • The force required to accelerate a 0.50kg ball at 50 m/s2 is (Remember F=ma) 25N 25K 50N 250N​
    5·1 answer
  • How does gravity work in space? Please help!​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!