A solar eclipse will be visible over a wide area of the north polar region
on Friday, March 20.
England is not in the path of totality, but it's close enough so that a large
part of the sun will be covered, and it will be a spectacular sight.
For Londoners, the eclipse begins Friday morning at 8:25 AM,when the
moon just begins to eat away at the sun's edge. It advances slowly, as more
and more of the sun disappears, and reaches maximum at 9:31 AM. Then
the obscured part of the sun begins to shrink, and the complete disk is
restored by the end of the eclipse at 10:41AM, after a period of 2 hours
16 minutes during which part of the sun appears to be missing.
The catch in observing the eclipse is:
<em><u>YOU MUST NOT LOOK AT THE SUN</u></em>.
Staring at the sun for a period of time can cause permanent damage to
your vision, even though <em><u>you don't feel it while it's happening</u></em>.
This is not a useful place to try and give you complete instructions or
suggestions for observing the sun over a period of hours. Please look
in your local newspaper, or search online for phrases like "safe eclipse
viewing".
Answer:
so 9/3=3 current is 3 amperes
Explanation:
B)<span>Readily accept electron flow.</span>
Answer:
the magnitude and direction of d → B on the x ‑axis at x = 2.50 m is -6.4 × 10⁻¹¹T(Along z direction)
the magnitude and direction of d → B on the z ‑axis at z = 5.00 m is 1.6 × 10⁻¹¹T(Along x direction)
Explanation:
Use Biot, Savart, the magnetic field

Given that,
i = 1.00A
d → l = 4.00 m m ^ j
r = 2.5m
Displacement vector is


=2.5m
on the axis of x at x = 2.5

r = 2.5m
And unit vector


Therefore, the magnetic field is as follow


(Along z direction)
B)r = 5.00m
Displacement vector is


=5.00m
on the axis of x at x = 5.0

r = 5.00m
And unit vector


Therefore, the magnetic field is as follow


(Along x direction)